A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev Space

Sergio Solimini

Annales de l'I.H.P. Analyse non linéaire (1995)

  • Volume: 12, Issue: 3, page 319-337
  • ISSN: 0294-1449

How to cite

top

Solimini, Sergio. "A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev Space." Annales de l'I.H.P. Analyse non linéaire 12.3 (1995): 319-337. <http://eudml.org/doc/78361>.

@article{Solimini1995,
author = {Solimini, Sergio},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {concentration-compactness; bounded sequences of functions in a Sobolev space with respect to Lorentz norms},
language = {eng},
number = {3},
pages = {319-337},
publisher = {Gauthier-Villars},
title = {A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev Space},
url = {http://eudml.org/doc/78361},
volume = {12},
year = {1995},
}

TY - JOUR
AU - Solimini, Sergio
TI - A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev Space
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1995
PB - Gauthier-Villars
VL - 12
IS - 3
SP - 319
EP - 337
LA - eng
KW - concentration-compactness; bounded sequences of functions in a Sobolev space with respect to Lorentz norms
UR - http://eudml.org/doc/78361
ER -

References

top
  1. [1] A. Alvino, P.L. Lions and G. Trombetti, On optimization problems with prescribed rearrangements, Nonlinear Analysis, T.M.A., Vol. 13, 1989, pp. 185-220. Zbl0678.49003MR979040
  2. [2] D. Fortunato, E. Jannelli and S. Solimini, in preparation. 
  3. [3] V. Glaser, A. Martin, H. Grosse and W. Thirring, A family of optimal conditions for the absence of bound states in a potential, in "Studies in Mathematical Physics ", E. H. Lieb, B. Simon and A. S. Wightman eds., Princeton University Press, 1976, pp. 169-194. Zbl0332.31004
  4. [4] P.L. Lions,The Concentration-Compactness Principle in the Calculus of Variations. The locally compact case-Part I, Ann. Inst. H. Poincare, Vol. 1, 1984, pp. 109-145. Zbl0541.49009MR778970
  5. [5] P.L. Lions, The Concentration-Compactness Principle in the Calculus of Variations. The locally compact case-Part II, Ann. Inst. H. Poincare, Vol. 1, 1984, pp. 223-283. Zbl0704.49004MR778974
  6. [6] P.L. Lions, The Concentration-Compactness Principle in the Calculus of Variations. The limit case-Part I, Rev. Mat. Iberoamericana, Vol. 1, No. 1, 1985, pp. 145-201. Zbl0704.49005MR834360
  7. [7] P.L. Lions, The Concentration-Compactness Principle in the Calculus of Variations. The limit case-Part II, Rev. Mat. Iberoamericana, Vol. 1, No. 2, 1985, pp. 45-121. Zbl0704.49006MR850686
  8. [8] A. Manes and A.M. Micheletti, Un' estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine, Boll. UMI, 1973, pp. 285-301. Zbl0275.49042MR344663
  9. [9] R.O.' Neil, Convolution operators and L(p, q) spaces, Duke Math. J., Vol. 30, 1963, pp. 129-142. Zbl0178.47701MR146673
  10. [10] S. Pohozaev, Eigenfunction of the equation Δu + λf(u) = 0, Soviet Math. Doklady, Vol. 6, 1965, pp. 1408-1411. 
  11. [11] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., Vol. 187, 1984, pp. 511-517. Zbl0535.35025MR760051

NotesEmbed ?

top

You must be logged in to post comments.