Profile decomposition for solutions of the Navier-Stokes equations

Isabelle Gallagher

Bulletin de la Société Mathématique de France (2001)

  • Volume: 129, Issue: 2, page 285-316
  • ISSN: 0037-9484

Abstract

top
We consider sequences of solutions of the Navier-Stokes equations in  3 , associated with sequences of initial data bounded in  H ˙ 1 / 2 . We prove, in the spirit of the work of H.Bahouri and P.Gérard (in the case of the wave equation), that they can be decomposed into a sum of orthogonal profiles, bounded in  H ˙ 1 / 2 , up to a remainder term small in  L 3 ; the method is based on the proof of a similar result for the heat equation, followed by a perturbation–type argument. If  𝒜 is an “admissible” space (in particular  L 3 , B ˙ p , - 1 + 3 / p for  p < + or  B M O ), and if  N S 𝒜 is the largest ball in  𝒜 centered at zero such that the elements of  H ˙ 1 / 2 N S 𝒜 generate global solutions, then we obtain as a corollary ana prioriestimate for those solutions. We also prove that the mapping from data in  H ˙ 1 / 2 N S 𝒜 to the associate solution is Lipschitz.

How to cite

top

Gallagher, Isabelle. "Profile decomposition for solutions of the Navier-Stokes equations." Bulletin de la Société Mathématique de France 129.2 (2001): 285-316. <http://eudml.org/doc/272321>.

@article{Gallagher2001,
abstract = {We consider sequences of solutions of the Navier-Stokes equations in $\{\mathbb \{R\}\}^3$, associated with sequences of initial data bounded in $\dot\{H\}^\{1/2\}$. We prove, in the spirit of the work of H.Bahouri and P.Gérard (in the case of the wave equation), that they can be decomposed into a sum of orthogonal profiles, bounded in $\dot\{H\}^\{1/2\}$, up to a remainder term small in $L^3$; the method is based on the proof of a similar result for the heat equation, followed by a perturbation–type argument. If $\{\mathcal \{A\}\}$ is an “admissible” space (in particular $L^3$, $\dot\{B\}^\{-1+3/p\}_\{p,\infty \}$ for $p &lt; +\infty $ or $\nabla \{B\hspace\{-0.55542pt\}M\hspace\{-0.55542pt\}O\} $), and if $\{\mathcal \{B\}\}_\{_\{\!\{N\hspace\{-1.111pt\}S\}\}\}^\{\{\mathcal \{A\}\}\}$ is the largest ball in $\{\mathcal \{A\}\}$ centered at zero such that the elements of $\dot\{H\}^\{1/2\}\cap \{\mathcal \{B\}\}_\{_\{\!\{N\hspace\{-1.111pt\}S\}\}\}^\{\{\mathcal \{A\}\}\}$ generate global solutions, then we obtain as a corollary ana prioriestimate for those solutions. We also prove that the mapping from data in $\dot\{H\}^\{1/2\}\cap \{\mathcal \{B\}\}_\{_\{\!\{N\hspace\{-1.111pt\}S\}\}\}^\{\{\mathcal \{A\}\}\}$ to the associate solution is Lipschitz.},
author = {Gallagher, Isabelle},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Navier–Stokes; explosion; profiles; a priori estimate; admissible space},
language = {eng},
number = {2},
pages = {285-316},
publisher = {Société mathématique de France},
title = {Profile decomposition for solutions of the Navier-Stokes equations},
url = {http://eudml.org/doc/272321},
volume = {129},
year = {2001},
}

TY - JOUR
AU - Gallagher, Isabelle
TI - Profile decomposition for solutions of the Navier-Stokes equations
JO - Bulletin de la Société Mathématique de France
PY - 2001
PB - Société mathématique de France
VL - 129
IS - 2
SP - 285
EP - 316
AB - We consider sequences of solutions of the Navier-Stokes equations in ${\mathbb {R}}^3$, associated with sequences of initial data bounded in $\dot{H}^{1/2}$. We prove, in the spirit of the work of H.Bahouri and P.Gérard (in the case of the wave equation), that they can be decomposed into a sum of orthogonal profiles, bounded in $\dot{H}^{1/2}$, up to a remainder term small in $L^3$; the method is based on the proof of a similar result for the heat equation, followed by a perturbation–type argument. If ${\mathcal {A}}$ is an “admissible” space (in particular $L^3$, $\dot{B}^{-1+3/p}_{p,\infty }$ for $p &lt; +\infty $ or $\nabla {B\hspace{-0.55542pt}M\hspace{-0.55542pt}O} $), and if ${\mathcal {B}}_{_{\!{N\hspace{-1.111pt}S}}}^{{\mathcal {A}}}$ is the largest ball in ${\mathcal {A}}$ centered at zero such that the elements of $\dot{H}^{1/2}\cap {\mathcal {B}}_{_{\!{N\hspace{-1.111pt}S}}}^{{\mathcal {A}}}$ generate global solutions, then we obtain as a corollary ana prioriestimate for those solutions. We also prove that the mapping from data in $\dot{H}^{1/2}\cap {\mathcal {B}}_{_{\!{N\hspace{-1.111pt}S}}}^{{\mathcal {A}}}$ to the associate solution is Lipschitz.
LA - eng
KW - Navier–Stokes; explosion; profiles; a priori estimate; admissible space
UR - http://eudml.org/doc/272321
ER -

References

top
  1. [1] H. Bahouri & P. Gérard – « Concentration effects in critical nonlinear wave equation and scattering theory », Geometrical optics and related topics (Cortona, 1996), Progr. Nonlinear Differential Equations Appl., vol. 32, Birkhäuser Boston, Boston, MA, 1997, p. 17–30. Zbl0926.35090MR2033489
  2. [2] —, « High frequency approximation of solutions to critical nonlinear wave equations », Amer. J. Math. 121 (1999), no. 1, p. 131–175. Zbl0919.35089MR1705001
  3. [3] M. Cannone – Ondelettes, paraproduits et Navier-Stokes, Diderot Editeur, Paris, 1995, With a preface by Yves Meyer. Zbl1049.35517MR1688096
  4. [4] J.-Y. Chemin – « Remarques sur l’existence globale pour le système de Navier-Stokes incompressible », SIAM J. Math. Anal. 23 (1992), no. 1, p. 20–28. Zbl0762.35063MR1145160
  5. [5] —, « Fluides parfaits incompressibles », Astérisque (1995), no. 230, p. 177. Zbl0829.76003MR1340046
  6. [6] —, « Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel », J. Anal. Math.77 (1999), p. 27–50. Zbl0938.35125MR1753481
  7. [7] P. Constantin & C. Foias – Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. Zbl0687.35071MR972259
  8. [8] H. Fujita & T. Kato – « On the Navier-Stokes initial value problem. I », Arch. Rational Mech. Anal.16 (1964), p. 269–315. Zbl0126.42301MR166499
  9. [9] G. Furioli – « Applications de l’analyse harmonique réelle à l’étude des équations de navier-stokes et de schrödinger non linéaire », Thèse, Évry University, 1999. 
  10. [10] G. Furioli, P.-G. Lemarié-Rieusset & E. Terraneo – « Sur l’unicité dans L 3 ( 𝐑 3 ) des solutions “mild” des équations de Navier-Stokes », C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 12, p. 1253–1256. Zbl0894.35083MR1490408
  11. [11] I. Gallagher – « The tridimensional Navier-Stokes equations with almost bidimensional data: stability, uniqueness, and life span », Internat. Math. Res. Notices (1997), no. 18, p. 919–935. Zbl0893.35098MR1481611
  12. [12] —, « Applications of Schochet’s methods to parabolic equations », J. Math. Pures Appl. (9) 77 (1998), no. 10, p. 989–1054. Zbl1101.35330MR1661025
  13. [13] —, « Décomposition en profils des solutions des équations de Navier-Stokes », Séminaire: Équations aux Dérivées Partielles, 1999–2000, Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, 2000, p. Exp. No. XXIV, 15. Zbl1067.35062
  14. [14] I. Gallagher & P. Gérard – « Profile decomposition for the wave equation outside a convex obstacle », J. Math. Pures Appl. (9) 80 (2001), no. 1, p. 1–49. Zbl0980.35088MR1810508
  15. [15] P. Gérard – « Oscillations and concentration effects in semilinear dispersive wave equations », J. Funct. Anal. 141 (1996), no. 1, p. 60–98. Zbl0868.35075MR1414374
  16. [16] —, « Description du défaut de compacité de l’injection de Sobolev », ESAIM Control Optim. Calc. Var. 3 (1998), p. 213–233 (electronic). MR1632171
  17. [17] P. Gérard, P. A. Markowich, N. J. Mauser & F. Poupaud – « Homogenization limits and Wigner transforms », Comm. Pure Appl. Math. 50 (1997), no. 4, p. 323–379. Zbl0881.35099MR1438151
  18. [18] T. Kato – « Strong L p -solutions of the Navier-Stokes equation in 𝐑 m , with applications to weak solutions », Math. Z. 187 (1984), no. 4, p. 471–480. Zbl0545.35073MR760047
  19. [19] S. Keraani – « On the defect of compactness for the Strichartz estimates of the Schrödinger equations », J. Differential Equations 175 (2001), no. 2, p. 353–392. Zbl1038.35119MR1855973
  20. [20] H. Koch & D. Tataru – « Well-posedness for the Navier-Stokes equations », Adv. Math. 157 (2001), no. 1, p. 22–35. Zbl0972.35084MR1808843
  21. [21] J. Leray – « Sur le mouvement d’un liquide visqueux emplissant l’espace », Acta Math. 63 (1934), no. 1, p. 193–248. MR1555394JFM60.0726.05
  22. [22] J. Peetre – New thoughts on Besov spaces, Mathematics Department, Duke University, Durham, N.C., 1976, Duke University Mathematics Series, No. 1. Zbl0356.46038MR461123
  23. [23] F. Planchon – « Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in 𝐑 3 », Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), no. 3, p. 319–336. Zbl0865.35101MR1395675
  24. [24] E. M. Stein – Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. Zbl0821.42001MR1232192
  25. [25] H. Triebel – Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, Basel, 1983. Zbl0546.46027MR781540

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.