Entropy of eigenfunctions of the Laplacian in dimension 2
- [1] Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau Cedex, France
Journées Équations aux dérivées partielles (2010)
- Volume: 155, Issue: 2, page 1-17
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topRivière, Gabriel. "Entropy of eigenfunctions of the Laplacian in dimension 2." Journées Équations aux dérivées partielles 155.2 (2010): 1-17. <http://eudml.org/doc/116381>.
@article{Rivière2010,
abstract = {We study asymptotic properties of eigenfunctions of the Laplacian on compact Riemannian surfaces of Anosov type (for instance negatively curved surfaces). More precisely, we give an answer to a question of Anantharaman and Nonnenmacher [4] by proving that the Kolmogorov-Sinai entropy of a semiclassical measure $\mu $ for the geodesic flow $g^t$ is bounded from below by half of the Ruelle upper bound. (This text has been written for the proceedings of the $37^\{\text\{èmes\}\}$ Journées EDP (Port d’Albret-June, 7-11 2010))},
affiliation = {Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau Cedex, France},
author = {Rivière, Gabriel},
journal = {Journées Équations aux dérivées partielles},
keywords = {Laplacian; compact Riemannian surface; Kolmogorov-Sinai entropy; geodesic flow; semiclassical measure},
language = {eng},
month = {6},
number = {2},
pages = {1-17},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Entropy of eigenfunctions of the Laplacian in dimension 2},
url = {http://eudml.org/doc/116381},
volume = {155},
year = {2010},
}
TY - JOUR
AU - Rivière, Gabriel
TI - Entropy of eigenfunctions of the Laplacian in dimension 2
JO - Journées Équations aux dérivées partielles
DA - 2010/6//
PB - Groupement de recherche 2434 du CNRS
VL - 155
IS - 2
SP - 1
EP - 17
AB - We study asymptotic properties of eigenfunctions of the Laplacian on compact Riemannian surfaces of Anosov type (for instance negatively curved surfaces). More precisely, we give an answer to a question of Anantharaman and Nonnenmacher [4] by proving that the Kolmogorov-Sinai entropy of a semiclassical measure $\mu $ for the geodesic flow $g^t$ is bounded from below by half of the Ruelle upper bound. (This text has been written for the proceedings of the $37^{\text{èmes}}$ Journées EDP (Port d’Albret-June, 7-11 2010))
LA - eng
KW - Laplacian; compact Riemannian surface; Kolmogorov-Sinai entropy; geodesic flow; semiclassical measure
UR - http://eudml.org/doc/116381
ER -
References
top- L.M. Abramov On the entropy of a flow, Translations of AMS , 167-170 (1966) Zbl0185.21803
- N. Anantharaman Entropy and the localization of eigenfunctions, Ann. of Math. , 435-475 (2008) Zbl1175.35036MR2434883
- N. Anantharaman, H. Koch, S. Nonnenmacher Entropy of eigenfunctions, arXiv:0704.1564, International Congress of Mathematical Physics (2007) Zbl1175.81118
- N. Anantharaman, S. Nonnenmacher Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, Ann. Inst. Fourier , 2465-2523 (2007) Zbl1145.81033MR2394549
- D. Bambusi, S. Graffi, T. Paul Long time semiclassical approximation of quantum flows: A proof of the Ehrenfest time, Asymp. Analysis , 149-160 (1999) Zbl0934.35142MR1723551
- L. Barreira, Y. Pesin Lectures on Lyapunov exponents and smooth ergodic theory, Proc. of Symposia in Pure Math. , 3-89 (2001) Zbl0996.37001MR1858534
- A. Bouzouina, S. de Bièvre Equipartition of the eigenfunctions of quantized ergodic maps on the torus, Comm. in Math. Phys. , 83-105 (1996) Zbl0876.58041MR1387942
- A. Bouzouina, D. Robert Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. Jour. , 223-252 (2002) Zbl1069.35061MR1882134
- N. Burq Mesures semi-classiques et mesures de défaut (d’après P.Gérard, L.Tartar et al.) Astérisque , séminaire Bourbaki, 167-196 (1997) Zbl0954.35102MR1627111
- Y. Colin de Verdière Ergodicité et fonctions propres du Laplacien, Comm. in Math. Phys. , 497-502 (1985) Zbl0592.58050MR818831
- M. Denker, C. Grillenberger, K. Sigmund Ergodic Theory on Compact Spaces, Springer, Berlin-Heidelberg-New-York (1976) Zbl0328.28008MR457675
- M. Dimassi, J. Sjöstrand Spectral Asymptotics in the Semiclassical Limit Cambridge University Press (1999) Zbl0926.35002MR1735654
- F. Faure, S. Nonnenmacher, S. de Bièvre Scarred eigenstates for quantum cat maps of minimal periods, Comm. in Math. Phys. , 449-492 (2003) Zbl1033.81024MR2000926
- B. Gutkin Entropic bounds on semiclassical measures for quantized one-dimensional maps, Comm. Math. Physics , 303-342 (2010) Zbl1223.58028MR2579457
- B. Hasselblatt, A. B. Katok Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its applications Cambridge University Press (1995) Zbl0878.58020MR1326374
- D. Kelmer Arithmetic quantum unique ergodicity for symplectic linear maps of the multidimensional torus, Ann. of Math. 815-879 (2010) Zbl1202.81076MR2630057
- F. Ledrappier, L.-S. Young The metric entropy of diffeomorphisms I. Characterization of measures satisfying Pesin’s entropy formula, Ann. of Math. , 509-539 (1985) Zbl0605.58028MR819556
- H. Maassen, J.B. Uffink Generalized entropic uncertainty relations, Phys. Rev. Lett. , 1103-1106 (1988) MR932170
- G. Rivière Entropy of semiclassical measures in dimension 2, to appear in Duke Math. Jour., hal-00315799 (2008)
- G. Rivière Entropy of semiclassical measures for nonpositively curved surfaces, hal-00430591 (2009)
- Z. Rudnick, P. Sarnak The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. in Math. Phys. , 195-213 (1994) Zbl0836.58043MR1266075
- D. Ruelle An inequality for the entropy of differentiable maps, Bol. Soc. Bras. Mat. , 83-87 (1978) Zbl0432.58013MR516310
- R. O. Ruggiero Dynamics and global geometry of manifolds without conjugate points, Ensaios Mate. , Soc. Bras. Mate. (2007) Zbl1133.37009MR2304843
- A. Shnirelman Ergodic properties of eigenfunctions, Usp. Math. Nauk. , 181-182 (1974) Zbl0324.58020MR402834
- P. Walters An introduction to ergodic theory, Springer-Verlag, Berlin, New York (1982) Zbl0475.28009MR648108
- L.-S. Young Dimension, entropy and Lyapunov exponents, Ergodic theory and Dynamical systems , 109-124 (1983) Zbl0523.58024MR684248
- S. Zelditch Uniform distribution of the eigenfunctions on compact hyperbolic surfaces, Duke Math. Jour. , 919-941 (1987) Zbl0643.58029MR916129
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.