Entropy of eigenfunctions of the Laplacian in dimension 2

Gabriel Rivière[1]

  • [1] Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau Cedex, France

Journées Équations aux dérivées partielles (2010)

  • Volume: 155, Issue: 2, page 1-17
  • ISSN: 0752-0360

Abstract

top
We study asymptotic properties of eigenfunctions of the Laplacian on compact Riemannian surfaces of Anosov type (for instance negatively curved surfaces). More precisely, we give an answer to a question of Anantharaman and Nonnenmacher [4] by proving that the Kolmogorov-Sinai entropy of a semiclassical measure μ for the geodesic flow g t is bounded from below by half of the Ruelle upper bound. (This text has been written for the proceedings of the 37 èmes Journées EDP (Port d’Albret-June, 7-11 2010))

How to cite

top

Rivière, Gabriel. "Entropy of eigenfunctions of the Laplacian in dimension 2." Journées Équations aux dérivées partielles 155.2 (2010): 1-17. <http://eudml.org/doc/116381>.

@article{Rivière2010,
abstract = {We study asymptotic properties of eigenfunctions of the Laplacian on compact Riemannian surfaces of Anosov type (for instance negatively curved surfaces). More precisely, we give an answer to a question of Anantharaman and Nonnenmacher [4] by proving that the Kolmogorov-Sinai entropy of a semiclassical measure $\mu $ for the geodesic flow $g^t$ is bounded from below by half of the Ruelle upper bound. (This text has been written for the proceedings of the $37^\{\text\{èmes\}\}$ Journées EDP (Port d’Albret-June, 7-11 2010))},
affiliation = {Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau Cedex, France},
author = {Rivière, Gabriel},
journal = {Journées Équations aux dérivées partielles},
keywords = {Laplacian; compact Riemannian surface; Kolmogorov-Sinai entropy; geodesic flow; semiclassical measure},
language = {eng},
month = {6},
number = {2},
pages = {1-17},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Entropy of eigenfunctions of the Laplacian in dimension 2},
url = {http://eudml.org/doc/116381},
volume = {155},
year = {2010},
}

TY - JOUR
AU - Rivière, Gabriel
TI - Entropy of eigenfunctions of the Laplacian in dimension 2
JO - Journées Équations aux dérivées partielles
DA - 2010/6//
PB - Groupement de recherche 2434 du CNRS
VL - 155
IS - 2
SP - 1
EP - 17
AB - We study asymptotic properties of eigenfunctions of the Laplacian on compact Riemannian surfaces of Anosov type (for instance negatively curved surfaces). More precisely, we give an answer to a question of Anantharaman and Nonnenmacher [4] by proving that the Kolmogorov-Sinai entropy of a semiclassical measure $\mu $ for the geodesic flow $g^t$ is bounded from below by half of the Ruelle upper bound. (This text has been written for the proceedings of the $37^{\text{èmes}}$ Journées EDP (Port d’Albret-June, 7-11 2010))
LA - eng
KW - Laplacian; compact Riemannian surface; Kolmogorov-Sinai entropy; geodesic flow; semiclassical measure
UR - http://eudml.org/doc/116381
ER -

References

top
  1. L.M. Abramov On the entropy of a flow, Translations of AMS 49 , 167-170 (1966) Zbl0185.21803
  2. N. Anantharaman Entropy and the localization of eigenfunctions, Ann. of Math. 168 , 435-475 (2008) Zbl1175.35036MR2434883
  3. N. Anantharaman, H. Koch, S. Nonnenmacher Entropy of eigenfunctions, arXiv:0704.1564, International Congress of Mathematical Physics (2007) Zbl1175.81118
  4. N. Anantharaman, S. Nonnenmacher Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, Ann. Inst. Fourier 57 , 2465-2523 (2007) Zbl1145.81033MR2394549
  5. D. Bambusi, S. Graffi, T. Paul Long time semiclassical approximation of quantum flows: A proof of the Ehrenfest time, Asymp. Analysis 21 , 149-160 (1999) Zbl0934.35142MR1723551
  6. L. Barreira, Y. Pesin Lectures on Lyapunov exponents and smooth ergodic theory, Proc. of Symposia in Pure Math. 69 , 3-89 (2001) Zbl0996.37001MR1858534
  7. A. Bouzouina, S. de Bièvre Equipartition of the eigenfunctions of quantized ergodic maps on the torus, Comm. in Math. Phys. 178 , 83-105 (1996) Zbl0876.58041MR1387942
  8. A. Bouzouina, D. Robert Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. Jour. 111 , 223-252 (2002) Zbl1069.35061MR1882134
  9. N. Burq Mesures semi-classiques et mesures de défaut (d’après P.Gérard, L.Tartar et al.) Astérisque 245 , séminaire Bourbaki, 167-196 (1997) Zbl0954.35102MR1627111
  10. Y. Colin de Verdière Ergodicité et fonctions propres du Laplacien, Comm. in Math. Phys. 102 , 497-502 (1985) Zbl0592.58050MR818831
  11. M. Denker, C. Grillenberger, K. Sigmund Ergodic Theory on Compact Spaces, Springer, Berlin-Heidelberg-New-York (1976) Zbl0328.28008MR457675
  12. M. Dimassi, J. Sjöstrand Spectral Asymptotics in the Semiclassical Limit Cambridge University Press (1999) Zbl0926.35002MR1735654
  13. F. Faure, S. Nonnenmacher, S. de Bièvre Scarred eigenstates for quantum cat maps of minimal periods, Comm. in Math. Phys. 239 , 449-492 (2003) Zbl1033.81024MR2000926
  14. B. Gutkin Entropic bounds on semiclassical measures for quantized one-dimensional maps, Comm. Math. Physics 294 , 303-342 (2010) Zbl1223.58028MR2579457
  15. B. Hasselblatt, A. B. Katok Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its applications 54 Cambridge University Press (1995) Zbl0878.58020MR1326374
  16. D. Kelmer Arithmetic quantum unique ergodicity for symplectic linear maps of the multidimensional torus, Ann. of Math. 171 815-879 (2010) Zbl1202.81076MR2630057
  17. F. Ledrappier, L.-S. Young The metric entropy of diffeomorphisms I. Characterization of measures satisfying Pesin’s entropy formula, Ann. of Math. 122 , 509-539 (1985) Zbl0605.58028MR819556
  18. H. Maassen, J.B. Uffink Generalized entropic uncertainty relations, Phys. Rev. Lett. 60 , 1103-1106 (1988) MR932170
  19. G. Rivière Entropy of semiclassical measures in dimension 2, to appear in Duke Math. Jour., hal-00315799 (2008) 
  20. G. Rivière Entropy of semiclassical measures for nonpositively curved surfaces, hal-00430591 (2009) 
  21. Z. Rudnick, P. Sarnak The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. in Math. Phys. 161 , 195-213 (1994) Zbl0836.58043MR1266075
  22. D. Ruelle An inequality for the entropy of differentiable maps, Bol. Soc. Bras. Mat. 9 , 83-87 (1978) Zbl0432.58013MR516310
  23. R. O. Ruggiero Dynamics and global geometry of manifolds without conjugate points, Ensaios Mate. 12 , Soc. Bras. Mate. (2007) Zbl1133.37009MR2304843
  24. A. Shnirelman Ergodic properties of eigenfunctions, Usp. Math. Nauk. 29 , 181-182 (1974) Zbl0324.58020MR402834
  25. P. Walters An introduction to ergodic theory, Springer-Verlag, Berlin, New York (1982) Zbl0475.28009MR648108
  26. L.-S. Young Dimension, entropy and Lyapunov exponents, Ergodic theory and Dynamical systems 2 , 109-124 (1983) Zbl0523.58024MR684248
  27. S. Zelditch Uniform distribution of the eigenfunctions on compact hyperbolic surfaces, Duke Math. Jour. 55 , 919-941 (1987) Zbl0643.58029MR916129

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.