Lecture notes : Mathematical study of singular perturbation problems Applications to large-scale oceanography

Laure Saint-Raymond[1]

  • [1] Université Paris VI and DMA, Ecole normale supérieure, 45 rue d’Ulm, 75230 Paris cedex 05, France

Journées Équations aux dérivées partielles (2010)

  • page 1-49
  • ISSN: 0752-0360

How to cite

top

Saint-Raymond, Laure. "Lecture notes : Mathematical study of singular perturbation problems Applications to large-scale oceanography." Journées Équations aux dérivées partielles (2010): 1-49. <http://eudml.org/doc/116382>.

@article{Saint2010,
affiliation = {Université Paris VI and DMA, Ecole normale supérieure, 45 rue d’Ulm, 75230 Paris cedex 05, France},
author = {Saint-Raymond, Laure},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-49},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Lecture notes : Mathematical study of singular perturbation problems Applications to large-scale oceanography},
url = {http://eudml.org/doc/116382},
year = {2010},
}

TY - JOUR
AU - Saint-Raymond, Laure
TI - Lecture notes : Mathematical study of singular perturbation problems Applications to large-scale oceanography
JO - Journées Équations aux dérivées partielles
DA - 2010/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 49
LA - eng
UR - http://eudml.org/doc/116382
ER -

References

top
  1. D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equation and convergence to the quasi-geostrophic model. Commun. Math. Phys.238 (2003), pages 211 - 223 Zbl1037.76012MR1989675
  2. J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Basics of Mathematical Geophysics, to appear in Oxford University Press, 2006. Zbl1205.86001MR2228849
  3. F. C. Fuglister, Gulf Stream ‘60, Progress in Oceanography I, Pergamon Press, 1963. 
  4. H. Fujita and T. Kato, On the Navier–Stokes initial value problem I, Archive for Rational Mechanics and Analysis, 16 (1964) pages 269–315. Zbl0126.42301MR166499
  5. I. Gallagher & L. Saint-Raymond, On the influence of the Earth’s rotation on geophysical flows, Handbook of Mathematical Fluid Dynamics, S. Friedlander and D. Serre Editors Vol 4, Chapter 5, 201-329, 2007. 
  6. Gerbeau, J.-F.; Perthame, B. Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1 (2001), no. 1, 89–102. Zbl0997.76023MR1821555
  7. A. E. Gill, Atmosphere-Ocean Dynamics, International Geophysics Series, Vol. 30, 1982. 
  8. A. E. Gill and M. S. Longuet-Higgins, Resonant interactions between planetary waves, Proc. Roy. Soc. London, A 299 (1967), pages 120–140. 
  9. J. Leray, Essai sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Matematica, 63 (1933), pages 193-248. Zbl59.0763.02MR1555394
  10. J. Leray, Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. Journal de Mathématiques Pures et Appliquées12 (1933), pages 1–82. Zbl0006.16702
  11. P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. II, Compressible Models, Oxford Science Publications, 1997. Zbl0908.76004
  12. A. Majda, Introduction to PDEs and waves for the atmosphere and ocean. Courant Lecture Notes in Mathematics, 9. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. Zbl1278.76004MR1965452
  13. A. Mellet and A. Vasseur, On the isentropic compressible Navier-Stokes equation, Preprint, 2005. 
  14. E. Palmén & C.W. Newton, Atmospheric Circulation Systems, Academic Press, 1969. 
  15. J. Pedlosky, Geophysical fluid dynamics, Springer, 1979 Zbl0713.76005
  16. R. Temam and M. Ziane, Some mathematical Problems in Geophysical Fluid Dynamics, Handbook of Mathematical Fluid Dynamics, vol. III, eds S. Friedlander and D. Serre, 535–657, 2004. Zbl1222.35145MR2099038
  17. A. Babin, A. Mahalov, and B. Nicolaenko, Global splitting, integrability and regularity of 3D Euler and Navier–Stokes equations for uniformly rotating fluids, European Journal of Mechanics, 15 (1996), pages 291–300. Zbl0882.76096MR1400515
  18. A. Babin, A. Mahalov, and B. Nicolaenko, Resonances and regularity for Boussinesq equations, Russian Journal of Mathematical Physics, 4 (1996), pages 417-428. Zbl0955.76521MR1470444
  19. A. Babin, A. Mahalov, and B. Nicolaenko, Global regularity of 3D rotating Navier–Stokes equations for resonant domains, Indiana University Mathematics Journal, 48 (1999), pages 1133–1176. Zbl0932.35160MR1736966
  20. F. Charve, Global well-posedness and asymptotics for a geophysical fluid system, Communications in Partial Differential Equations, 29 (2004), pages 1919-1940. Zbl1156.35449MR2106072
  21. J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Basics of Mathematical Geophysics, to appear in Oxford University Press, 2006. Zbl1205.86001MR2228849
  22. I. Gallagher, Applications of Schochet’s methods to parabolic equations, Journal de Mathématiques Pures et Appliquées, 77 (1998), pages 989-1054. Zbl1101.35330MR1661025
  23. I. Gallagher & L. Saint-Raymond, On the influence of the Earth’s rotation on geophysical flows, Handbook of Mathematical Fluid Dynamics, S. Friedlander and D. Serre Editors Vol 4, Chapter 5, 201-329, 2007. 
  24. H.P. Greenspan, The theory of rotating fluids, Cambridge monographs on mechanics and applied mathematics, 1969 Zbl0182.28103
  25. E. Grenier, Oscillatory perturbations of the Navier–Stokes equations. Journal de Mathématiques Pures et Appliquées, 76 (1997), pages 477-498. Zbl0885.35090MR1465607
  26. S. Schochet, Fast singular limits of hyperbolic PDEs. Journal of Differential Equations114 (1994), pages 476 - 512 Zbl0838.35071MR1303036
  27. W. Thomson (Lord Kelvin), On gravitational oscillations of rotating water. Proc. Roy. Soc. Edinburgh10, 1879, pages 92-100. Zbl11.0689.01MR2413172
  28. D. Bresch, B. Desjardins and D. Gérard-Varet, Rotating fluids in a cylinder, Discrete and Contininous Dynamical Systems.11 (2004), no. 1, pages 47–82. Zbl1138.76446MR2073946
  29. J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Basics of Mathematical Geophysics, to appear in Oxford University Press, 2006. Zbl1205.86001MR2228849
  30. A.-L. Dalibard, L. Saint-Raymond, Mathematical study of rotating fluids with resonant surface stress. J. Differential Equations246 (2009), 2304–2354. Zbl1159.76048MR2498843
  31. A.-L. Dalibard, L. Saint-Raymond, Mathematical study of the beta-plane model for rotating fluids in a thin layer, J. Math. Pures Appl. (2010). Zbl05771281
  32. A.-L. Dalibard, L. Saint-Raymond, About degenerate Northern boundary layers, in preparation. 
  33. B. Desjardins and E. Grenier, On the Homogeneous Model of Wind-Driven Ocean Circulation, SIAM Journal on Applied Mathematics60 (1999), pages 43–60. Zbl0958.76092MR1740834
  34. D. Gérard-Varet, Highly rotating fluids in rough domains, Journal de Mathématiques Pures et Appliquées82 (2003), pages 1453–1498. Zbl1033.76008MR2020807
  35. I. Gallagher & L. Saint-Raymond, On the influence of the Earth’s rotation on geophysical flows, Handbook of Mathematical Fluid Dynamics, S. Friedlander and D. Serre Editors Vol 4, Chapter 5, 201-329, 2007. 
  36. E. Grenier and N. Masmoudi, Ekman layers of rotating fluids, the case of well prepared initial data, Communications in Partial Differential Equations22 (1997), no. 5-6, pages 953–975. Zbl0880.35093MR1452174
  37. N. Masmoudi, Ekman layers of rotating fluids: the case of general initial data, Communications in Pure and Applied Mathematics, 53, (2000), pages 432–483. Zbl1047.76124MR1733696
  38. N. Masmoudi, F. Rousset. Stability of oscillating boundary layers in rotating fluids. Ann. Sci. Éc. Norm. Supér. 41 (2008), 955–1002. Zbl1159.76013MR2504110
  39. F. Rousset. Asymptotic behavior of geophysical fluids in highly rotating balls. Z. Angew. Math. Phys.58 (2007), 53–67. Zbl1105.76060MR2293102
  40. Saint-Raymond, Weak compactness methods for singular penalization problems with boundary layers. SIAM J. Math. Anal.41 (2009), 153–177. Zbl1303.76130MR2505856
  41. C. Cheverry, I. Gallagher, T. Paul & L. Saint-Raymond, Trapping Rossby waves, C. R. Math. Acad. Sci. Paris 347 (2009), 879–884. Zbl1177.35162MR2542888
  42. C. Cheverry, I. Gallagher, T. Paul & L. Saint-Raymond. Semiclassical and spectral analysis of oceanic waves. Submitted (2010). Zbl1244.35147
  43. M. Dimassi & S. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit; Cambridge University Press, London Mathematical Society Lecture Note Series 268, 1999. Zbl0926.35002MR1735654
  44. A. Dutrifoy & A. J. Majda, Fast Wave Averaging for the Equatorial Shallow Water Equations, Comm. PDE, 32 (2007), 1617 –1642. Zbl1166.35361MR2372481
  45. A. Dutrifoy, A. J. Majda & S. Schochet, A Simple Justification of the Singular Limit for Equatorial Shallow-Water Dynamics, in Communications on Pure and Applied Math. LXI (2008) 0002-0012. Zbl1156.76013
  46. I. Gallagher and L. Saint-Raymond, Weak convergence results for inhomogeneous rotating fluid equations, Journal d’Analyse Mathématique, 99 (2006), 1-34. Zbl1132.35440MR2279546
  47. I. Gallagher & L. Saint-Raymond, Mathematical study of the betaplane model: equatorial waves and convergence results. Mém. Soc. Math. Fr. (N.S.). 107 (2006), v+116 pp. Zbl1151.35070MR2424189
  48. I. Gallagher & L. Saint-Raymond, On the influence of the Earth’s rotation on geophysical flows, Handbook of Mathematical Fluid Dynamics, S. Friedlander and D. Serre Editors Vol 4, Chapter 5, 201-329, 2007. 
  49. A. E. Gill, Atmosphere-Ocean Dynamics, International Geophysics Series, Vol. 30, 1982. 
  50. A. E. Gill & M. S. Longuet-Higgins, Resonant interactions between planetary waves, Proc. Roy. Soc. London, A 299 (1967), 120–140. 
  51. J.-L. Joly, G. Métivier & J. Rauch, Generic Rigorous Asymptotic Expansions for Weakly Nonlinear Multidimensional Oscillatory Waves, Duke Mathematical Journal (1993), 70, 373-404. Zbl0815.35066MR1219817
  52. J.-L. Joly, G. Métivier & J. Rauch, Coherent nonlinear waves and the Wiener algebra, Ann. Inst. Fourier (Grenoble)44 (1994), no. 1, 167–196. Zbl0791.35019MR1262884
  53. M. Majdoub, M. Paicu. Uniform local existence for inhomogeneous rotating fluid equations. J. Dynam. Differential Equations21 (2009), 21–44. Zbl1160.76052MR2482007
  54. A. Martinez, An introduction to semiclassical and microlocal analysis, Springer (2002) Zbl0994.35003MR1872698
  55. J. Pedlosky, Geophysical fluid dynamics, Springer (1979). Zbl0429.76001
  56. J. Pedlosky, Ocean Circulation Theory, Springer (1996). Zbl0159.59402
  57. S. Vũ Ngoc, Systèmes intégrables semi-classiques : du local au global, Panoramas et Synthèses22, 2006. Zbl1118.37001MR2331010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.