Lecture notes : Mathematical study of singular perturbation problems Applications to large-scale oceanography
- [1] Université Paris VI and DMA, Ecole normale supérieure, 45 rue d’Ulm, 75230 Paris cedex 05, France
Journées Équations aux dérivées partielles (2010)
- page 1-49
- ISSN: 0752-0360
Access Full Article
topHow to cite
topSaint-Raymond, Laure. "Lecture notes : Mathematical study of singular perturbation problems Applications to large-scale oceanography." Journées Équations aux dérivées partielles (2010): 1-49. <http://eudml.org/doc/116382>.
@article{Saint2010,
affiliation = {Université Paris VI and DMA, Ecole normale supérieure, 45 rue d’Ulm, 75230 Paris cedex 05, France},
author = {Saint-Raymond, Laure},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-49},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Lecture notes : Mathematical study of singular perturbation problems Applications to large-scale oceanography},
url = {http://eudml.org/doc/116382},
year = {2010},
}
TY - JOUR
AU - Saint-Raymond, Laure
TI - Lecture notes : Mathematical study of singular perturbation problems Applications to large-scale oceanography
JO - Journées Équations aux dérivées partielles
DA - 2010/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 49
LA - eng
UR - http://eudml.org/doc/116382
ER -
References
top- D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equation and convergence to the quasi-geostrophic model. Commun. Math. Phys.238 (2003), pages . Zbl1037.76012MR1989675
- J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Basics of Mathematical Geophysics, to appear in Oxford University Press, 2006. Zbl1205.86001MR2228849
- F. C. Fuglister, Gulf Stream ‘60, Progress in Oceanography I, Pergamon Press, 1963.
- H. Fujita and T. Kato, On the Navier–Stokes initial value problem I, Archive for Rational Mechanics and Analysis, 16 (1964) pages 269–315. Zbl0126.42301MR166499
- I. Gallagher & L. Saint-Raymond, On the influence of the Earth’s rotation on geophysical flows, Handbook of Mathematical Fluid Dynamics, S. Friedlander and D. Serre Editors Vol 4, Chapter 5, 201-329, 2007.
- Gerbeau, J.-F.; Perthame, B. Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1 (2001), no. 1, 89–102. Zbl0997.76023MR1821555
- A. E. Gill, Atmosphere-Ocean Dynamics, International Geophysics Series, Vol. 30, 1982.
- A. E. Gill and M. S. Longuet-Higgins, Resonant interactions between planetary waves, Proc. Roy. Soc. London, A 299 (1967), pages 120–140.
- J. Leray, Essai sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Matematica, 63 (1933), pages 193-248. Zbl59.0763.02MR1555394
- J. Leray, Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. Journal de Mathématiques Pures et Appliquées12 (1933), pages 1–82. Zbl0006.16702
- P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. II, Compressible Models, Oxford Science Publications, 1997. Zbl0908.76004
- A. Majda, Introduction to PDEs and waves for the atmosphere and ocean. Courant Lecture Notes in Mathematics, 9. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. Zbl1278.76004MR1965452
- A. Mellet and A. Vasseur, On the isentropic compressible Navier-Stokes equation, Preprint, 2005.
- E. Palmén & C.W. Newton, Atmospheric Circulation Systems, Academic Press, 1969.
- J. Pedlosky, Geophysical fluid dynamics, Springer, . Zbl0713.76005
- R. Temam and M. Ziane, Some mathematical Problems in Geophysical Fluid Dynamics, Handbook of Mathematical Fluid Dynamics, vol. III, eds S. Friedlander and D. Serre, 535–657, 2004. Zbl1222.35145MR2099038
- A. Babin, A. Mahalov, and B. Nicolaenko, Global splitting, integrability and regularity of 3D Euler and Navier–Stokes equations for uniformly rotating fluids, European Journal of Mechanics, 15 (1996), pages 291–300. Zbl0882.76096MR1400515
- A. Babin, A. Mahalov, and B. Nicolaenko, Resonances and regularity for Boussinesq equations, Russian Journal of Mathematical Physics, 4 (1996), pages 417-428. Zbl0955.76521MR1470444
- A. Babin, A. Mahalov, and B. Nicolaenko, Global regularity of 3D rotating Navier–Stokes equations for resonant domains, Indiana University Mathematics Journal, 48 (1999), pages 1133–1176. Zbl0932.35160MR1736966
- F. Charve, Global well-posedness and asymptotics for a geophysical fluid system, Communications in Partial Differential Equations, 29 (2004), pages 1919-1940. Zbl1156.35449MR2106072
- J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Basics of Mathematical Geophysics, to appear in Oxford University Press, 2006. Zbl1205.86001MR2228849
- I. Gallagher, Applications of Schochet’s methods to parabolic equations, Journal de Mathématiques Pures et Appliquées, 77 (1998), pages 989-1054. Zbl1101.35330MR1661025
- I. Gallagher & L. Saint-Raymond, On the influence of the Earth’s rotation on geophysical flows, Handbook of Mathematical Fluid Dynamics, S. Friedlander and D. Serre Editors Vol 4, Chapter 5, 201-329, 2007.
- H.P. Greenspan, The theory of rotating fluids, Cambridge monographs on mechanics and applied mathematics, . Zbl0182.28103
- E. Grenier, Oscillatory perturbations of the Navier–Stokes equations. Journal de Mathématiques Pures et Appliquées, 76 (1997), pages 477-498. Zbl0885.35090MR1465607
- S. Schochet, Fast singular limits of hyperbolic PDEs. Journal of Differential Equations114 (1994), pages . Zbl0838.35071MR1303036
- W. Thomson (Lord Kelvin), On gravitational oscillations of rotating water. Proc. Roy. Soc. Edinburgh10, 1879, pages 92-100. Zbl11.0689.01MR2413172
- D. Bresch, B. Desjardins and D. Gérard-Varet, Rotating fluids in a cylinder, Discrete and Contininous Dynamical Systems.11 (2004), no. 1, pages 47–82. Zbl1138.76446MR2073946
- J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Basics of Mathematical Geophysics, to appear in Oxford University Press, 2006. Zbl1205.86001MR2228849
- A.-L. Dalibard, L. Saint-Raymond, Mathematical study of rotating fluids with resonant surface stress. J. Differential Equations246 (2009), 2304–2354. Zbl1159.76048MR2498843
- A.-L. Dalibard, L. Saint-Raymond, Mathematical study of the beta-plane model for rotating fluids in a thin layer, J. Math. Pures Appl. (2010). Zbl05771281
- A.-L. Dalibard, L. Saint-Raymond, About degenerate Northern boundary layers, in preparation.
- B. Desjardins and E. Grenier, On the Homogeneous Model of Wind-Driven Ocean Circulation, SIAM Journal on Applied Mathematics60 (1999), pages 43–60. Zbl0958.76092MR1740834
- D. Gérard-Varet, Highly rotating fluids in rough domains, Journal de Mathématiques Pures et Appliquées82 (2003), pages 1453–1498. Zbl1033.76008MR2020807
- I. Gallagher & L. Saint-Raymond, On the influence of the Earth’s rotation on geophysical flows, Handbook of Mathematical Fluid Dynamics, S. Friedlander and D. Serre Editors Vol 4, Chapter 5, 201-329, 2007.
- E. Grenier and N. Masmoudi, Ekman layers of rotating fluids, the case of well prepared initial data, Communications in Partial Differential Equations22 (1997), no. 5-6, pages 953–975. Zbl0880.35093MR1452174
- N. Masmoudi, Ekman layers of rotating fluids: the case of general initial data, Communications in Pure and Applied Mathematics, 53, (2000), pages 432–483. Zbl1047.76124MR1733696
- N. Masmoudi, F. Rousset. Stability of oscillating boundary layers in rotating fluids. Ann. Sci. Éc. Norm. Supér. 41 (2008), 955–1002. Zbl1159.76013MR2504110
- F. Rousset. Asymptotic behavior of geophysical fluids in highly rotating balls. Z. Angew. Math. Phys.58 (2007), 53–67. Zbl1105.76060MR2293102
- Saint-Raymond, Weak compactness methods for singular penalization problems with boundary layers. SIAM J. Math. Anal.41 (2009), 153–177. Zbl1303.76130MR2505856
- C. Cheverry, I. Gallagher, T. Paul & L. Saint-Raymond, Trapping Rossby waves, C. R. Math. Acad. Sci. Paris 347 (2009), 879–884. Zbl1177.35162MR2542888
- C. Cheverry, I. Gallagher, T. Paul & L. Saint-Raymond. Semiclassical and spectral analysis of oceanic waves. Submitted (2010). Zbl1244.35147
- M. Dimassi & S. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit; Cambridge University Press, London Mathematical Society Lecture Note Series 268, 1999. Zbl0926.35002MR1735654
- A. Dutrifoy & A. J. Majda, Fast Wave Averaging for the Equatorial Shallow Water Equations, Comm. PDE, 32 (2007), 1617 –1642. Zbl1166.35361MR2372481
- A. Dutrifoy, A. J. Majda & S. Schochet, A Simple Justification of the Singular Limit for Equatorial Shallow-Water Dynamics, in Communications on Pure and Applied Math. LXI (2008) 0002-0012. Zbl1156.76013
- I. Gallagher and L. Saint-Raymond, Weak convergence results for inhomogeneous rotating fluid equations, Journal d’Analyse Mathématique, 99 (2006), 1-34. Zbl1132.35440MR2279546
- I. Gallagher & L. Saint-Raymond, Mathematical study of the betaplane model: equatorial waves and convergence results. Mém. Soc. Math. Fr. (N.S.). 107 (2006), v+116 pp. Zbl1151.35070MR2424189
- I. Gallagher & L. Saint-Raymond, On the influence of the Earth’s rotation on geophysical flows, Handbook of Mathematical Fluid Dynamics, S. Friedlander and D. Serre Editors Vol 4, Chapter 5, 201-329, 2007.
- A. E. Gill, Atmosphere-Ocean Dynamics, International Geophysics Series, Vol. 30, 1982.
- A. E. Gill & M. S. Longuet-Higgins, Resonant interactions between planetary waves, Proc. Roy. Soc. London, A 299 (1967), 120–140.
- J.-L. Joly, G. Métivier & J. Rauch, Generic Rigorous Asymptotic Expansions for Weakly Nonlinear Multidimensional Oscillatory Waves, Duke Mathematical Journal (1993), 70, 373-404. Zbl0815.35066MR1219817
- J.-L. Joly, G. Métivier & J. Rauch, Coherent nonlinear waves and the Wiener algebra, Ann. Inst. Fourier (Grenoble)44 (1994), no. 1, 167–196. Zbl0791.35019MR1262884
- M. Majdoub, M. Paicu. Uniform local existence for inhomogeneous rotating fluid equations. J. Dynam. Differential Equations21 (2009), 21–44. Zbl1160.76052MR2482007
- A. Martinez, An introduction to semiclassical and microlocal analysis, Springer (2002) Zbl0994.35003MR1872698
- J. Pedlosky, Geophysical fluid dynamics, Springer (1979). Zbl0429.76001
- J. Pedlosky, Ocean Circulation Theory, Springer (1996). Zbl0159.59402
- S. Vũ Ngoc, Systèmes intégrables semi-classiques : du local au global, Panoramas et Synthèses22, 2006. Zbl1118.37001MR2331010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.