Some recent results on the Muskat problem

Angel Castro[1]; Diego Córdoba[1]; Francisco Gancedo[2]

  • [1] Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain
  • [2] Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, IL 60637

Journées Équations aux dérivées partielles (2010)

  • Volume: 299, Issue: 2, page 1-14
  • ISSN: 0752-0360

Abstract

top
We consider the dynamics of an interface given by two incompressible fluids with different characteristics evolving by Darcy’s law. This scenario is known as the Muskat problem, being in 2D mathematically analogous to the two-phase Hele-Shaw cell. The purpose of this paper is to outline recent results on local existence, weak solutions, maximum principles and global existence.

How to cite

top

Castro, Angel, Córdoba, Diego, and Gancedo, Francisco. "Some recent results on the Muskat problem." Journées Équations aux dérivées partielles 299.2 (2010): 1-14. <http://eudml.org/doc/116386>.

@article{Castro2010,
abstract = {We consider the dynamics of an interface given by two incompressible fluids with different characteristics evolving by Darcy’s law. This scenario is known as the Muskat problem, being in 2D mathematically analogous to the two-phase Hele-Shaw cell. The purpose of this paper is to outline recent results on local existence, weak solutions, maximum principles and global existence.},
affiliation = {Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain; Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain; Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, IL 60637},
author = {Castro, Angel, Córdoba, Diego, Gancedo, Francisco},
journal = {Journées Équations aux dérivées partielles},
keywords = {multiple fluids; porous media; Hele-Shaw problems},
language = {eng},
month = {6},
number = {2},
pages = {1-14},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Some recent results on the Muskat problem},
url = {http://eudml.org/doc/116386},
volume = {299},
year = {2010},
}

TY - JOUR
AU - Castro, Angel
AU - Córdoba, Diego
AU - Gancedo, Francisco
TI - Some recent results on the Muskat problem
JO - Journées Équations aux dérivées partielles
DA - 2010/6//
PB - Groupement de recherche 2434 du CNRS
VL - 299
IS - 2
SP - 1
EP - 14
AB - We consider the dynamics of an interface given by two incompressible fluids with different characteristics evolving by Darcy’s law. This scenario is known as the Muskat problem, being in 2D mathematically analogous to the two-phase Hele-Shaw cell. The purpose of this paper is to outline recent results on local existence, weak solutions, maximum principles and global existence.
LA - eng
KW - multiple fluids; porous media; Hele-Shaw problems
UR - http://eudml.org/doc/116386
ER -

References

top
  1. D. Ambrose. Well-posedness of Two-phase Hele-Shaw Flow without Surface Tension. Euro. Jnl. of Applied Mathematics 15 597-607, 2004. Zbl1076.76027MR2128613
  2. G. Baker, D. Meiron and S. Orszag. Generalized vortex methods for free-surface flow problems. J. Fluid Mech. 123 477-501, 1982. Zbl0507.76028MR687014
  3. J. Bear, Dynamics of Fluids in Porous Media, American Elsevier, New York, 1972. Zbl1191.76001
  4. A. L. Bertozzi and P. Constantin. Global regularity for vortex patches. Comm. Math. Phys. 152 (1), 19-28, 1993. Zbl0771.76014MR1207667
  5. R. Caflisch and O. Orellana. Singular solutions and ill-posedness for the evolution of vortex sheets. SIAM J. Math. Anal. 20 (2): 293-307, 1989. Zbl0697.76029MR982661
  6. A. Castro, D. Córdoba, C. Fefferman, F. Gancedo and M. Lopez. Rayleigh-Taylor breakdown for the Muskat problem. Preprint. Zbl1267.76033
  7. P. Constantin, D. Córdoba, F. Gancedo and R.M. Strain. On the global existence for the for the Muskat problem. ArXiv:1007.3744. Zbl1258.35002
  8. P. Constantin and M. Pugh. Global solutions for small data to the Hele-Shaw problem. Nonlinearity, 6 (1993), 393 - 415. Zbl0808.35104MR1223740
  9. A. Córdoba, D. Córdoba and F. Gancedo. Interface evolution: the Hele-Shaw and Muskat problems. Preprint 2008, ArXiv:0806.2258. To appear in Annals of Math. Zbl1229.35204
  10. D. Córdoba and F. Gancedo. Contour dynamics of incompressible 3-D fluids in a porous medium with different densities. Comm. Math. Phys. 273, 2, 445-471 (2007). Zbl1120.76064MR2318314
  11. D. Córdoba and F. Gancedo. A maximum principle for the Muskat problem for fluids with different densities. Comm. Math.Phys., 286 (2009), no. 2, 681-696. Zbl1173.35637MR2472040
  12. D. Córdoba, F. Gancedo and R. Orive. A note on the interface dynamics for convection in porous media. Physica D, 237 (2008), 1488-1497. Zbl1143.76574MR2454601
  13. D. Córdoba and F. Gancedo. Absence of squirt singularities for the multi-phase Muskat problem. Comm. Math. Phys., 299, 2, (2010), 561-575. Zbl1198.35176
  14. J. Escher and G. Simonett. Classical solutions for Hele-Shaw models with surface tension. Adv. Differential Equations, 2:619-642, 1997. Zbl1023.35527MR1441859
  15. J. Escher and B.-V. Matioc. On the parabolicity of the Muskat problem: Well-posedness, fingering, and stability results. ArXiv:1005.2512. Zbl1223.35199
  16. J. Escher, A.-V. Matioc and B.-V. Matioc: A generalised Rayleigh-Taylor condition for the Muskat problem. Arxiv:1005.2511. 
  17. M. Muskat. The flow of homogeneous fluids through porous media. New York, Springer 1982. 
  18. L. Nirenberg. An abstract form of the nonlinear Cauchy-Kowalewski theorem. J. Differential Geometry, 6 561-576, 1972. Zbl0257.35001MR322321
  19. T. Nishida. A note on a theorem of Nirenberg. J. Differential Geometry, 12 629-633, 1977. Zbl0368.35007MR512931
  20. Lord Rayleigh (J.W. Strutt), On the instability of jets. Proc. Lond. Math. Soc. 10, 413, 1879. 
  21. P.G. Saffman and Taylor. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. London, Ser. A 245, 312-329, 1958. Zbl0086.41603MR97227
  22. M. Siegel, R. Caflisch and S. Howison. Global Existence, Singular Solutions, and Ill-Posedness for the Muskat Problem. Comm. Pure and Appl. Math., 57, 1374-1411, 2004. Zbl1062.35089MR2070208
  23. F. Yi. Local classical solution of Muskat free boundary problem. J. Partial Diff. Eqs., 9 (1996), 84-96. Zbl0847.35152MR1384001
  24. F. Yi. Global classical solution of Muskat free boundary problem. J. Math. Anal. Appl., 288 (2003), 442-461. Zbl1038.35083MR2019452

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.