Page 1

Displaying 1 – 17 of 17

Showing per page

A diffuse interface fractional time-stepping technique for incompressible two-phase flows with moving contact lines

Abner J. Salgado (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

For a two phase incompressible flow we consider a diffuse interface model aimed at addressing the movement of three-phase (fluid-fluid-solid) contact lines. The model consists of the Cahn Hilliard Navier Stokes system with a variant of the Navier slip boundary conditions. We show that this model possesses a natural energy law. For this system, a new numerical technique based on operator splitting and fractional time-stepping is proposed. The method is shown to be unconditionally stable. We present...

Chute stationnaire d’un solide dans un fluide visqueux incompressible au-dessus d’un plan incliné. Partie 2

M. Hillairet (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

Nous montrons dans cette étude l’existence de configurations stationnaires où une bille tombe le long d’un plan incliné sans le toucher. Nous donnons également des propriétés qualitatives de ces configurations. En particulier, nous nous intéressons à l’orientation du plan par rapport à la verticale quand la masse de la bille est proche de celle d’un volume équivalent de liquide i.e., quand l’écoulement autour de la bille est lent.

Modelling and Numerical Simulation of the Dynamics of Glaciers Including Local Damage Effects

G. Jouvet, M. Picasso, J. Rappaz, M. Huss, M. Funk (2011)

Mathematical Modelling of Natural Phenomena

A numerical model to compute the dynamics of glaciers is presented. Ice damage due to cracks or crevasses can be taken into account whenever needed. This model allows simulations of the past and future retreat of glaciers, the calving process or the break-off of hanging glaciers. All these phenomena are strongly affected by climate change.Ice is assumed to behave as an incompressible fluid with nonlinear viscosity, so that the velocity and pressure...

On a temperature-dependent Hele-Shaw flow in one dimension

Antonio Fasano, Laura Pezza (2001)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A model is presented for a Hele-Shaw flow with variable temperature in one space dimension. The problem to be solved is a free boundary problem for a parabolic equation with a non-linear and non-local free boundary condition. Existence and uniqueness are proved.

Some recent results on the Muskat problem

Angel Castro, Diego Córdoba, Francisco Gancedo (2010)

Journées Équations aux dérivées partielles

We consider the dynamics of an interface given by two incompressible fluids with different characteristics evolving by Darcy’s law. This scenario is known as the Muskat problem, being in 2D mathematically analogous to the two-phase Hele-Shaw cell. The purpose of this paper is to outline recent results on local existence, weak solutions, maximum principles and global existence.

Stefan problem in a 2D case

Piotr Bogusław Mucha (2006)

Colloquium Mathematicae

The aim of this paper is to analyze the well posedness of the one-phase quasi-stationary Stefan problem with the Gibbs-Thomson correction in a two-dimensional domain which is a perturbation of the half plane. We show the existence of a unique regular solution for an arbitrary time interval, under suitable smallness assumptions on initial data. The existence is shown in the Besov-Slobodetskiĭ class with sharp regularity in the L₂-framework.

The motion of a fluid in an open channel

Simina Bodea (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider a free boundary value problem for a viscous, incompressible fluid contained in an uncovered three-dimensional rectangular channel, with gravity and surface tension, governed by the Navier-Stokes equations. We obtain existence results for the linear and nonlinear time-dependent problem. We analyse the qualitative behavior of the flow using tools of bifurcation theory. The main result is a Hopf bifurcation theorem with k -symmetry.

Currently displaying 1 – 17 of 17

Page 1