Fonctions à valeurs entières et module de Carlitz
David Adam[1]
- [1] LAMFA CNRS UMR 6140 Laboratoire Amiénois de Mathématiques Fondamentales et Appliquées Faculté de Mathématiques et d’Informatique 33, rue Saint-Leu, 80039 Amiens Cedex 1
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 2, page 271-286
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- D. Adam, Car-Pólya and Gel’fond’s theorems for . Acta Arith. 115.3 (2004), 287–303. Zbl1088.11087MR2100507
- D. Adam, Finite differences in finite characteristic. J. of Algebra 296.1 (2006), 285–300. Zbl1095.13019MR2192608
- M. Bhargava, -orderings and polynomial functions on arbitrary subsets of Dedekind rings. J. Reine Angew. Math. 490 (1997), 101–127. Zbl0899.13022MR1468927
- M. Bhargava, The factorial function and generalizations. The A. Math. Monthly 107.9 (2000), 783–799. Zbl0987.05003MR1792411
- P.J. Cahen, J.L. Chabert, Integer valued polynomials. Mathematical Survey and Monographs, vol 48, American Mathematical Society, Providence, 1997. Zbl0884.13010MR1421321
- M. Car, Répartition modulo dans un corps de série formelle sur un corps fini. Acta Arith. 69.3 (1995), 229–242. Zbl0819.11026MR1316477
- M. Car, Pólya’s theorem for . J. Number Theory 66 (1997), 148–171. Zbl0886.11034MR1467194
- L. Carlitz, On certains functions connected with polynomials in a Galois field. Duke Math. J. 1 (1935), 137–168. Zbl0012.04904MR1545872
- L. Carlitz, A set of polynomials. Duke Math. J. 6 (1940), 486–504. Zbl0026.05304MR1946
- D. Goss, Basic Structures of Function Field Arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 35, Springer-Verlag, Berlin, 1996. Zbl0892.11021MR1423131
- G. Pólya, Über ganzwertige ganze Funktionen. Rend. Circ. Math. Palermo 40 (1915), 1–16. Zbl45.0655.02
- M. Rosen, Number Theory in Function Fields. Graduate Texts in Mathematics 210, Springer-Verlag, New-York, 2002. Zbl1043.11079MR1876657