The circle method and pairs of quadratic forms

Henryk Iwaniec[1]; Ritabrata Munshi[2]

  • [1] Rutgers University 110, Frelinghuysen Road Piscataway NJ 08854, USA
  • [2] School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road Mumbai 400005, India

Journal de Théorie des Nombres de Bordeaux (2010)

  • Volume: 22, Issue: 2, page 403-419
  • ISSN: 1246-7405

Abstract

top
We give non-trivial upper bounds for the number of integral solutions, of given size, of a system of two quadratic form equations in five variables.

How to cite

top

Iwaniec, Henryk, and Munshi, Ritabrata. "The circle method and pairs of quadratic forms." Journal de Théorie des Nombres de Bordeaux 22.2 (2010): 403-419. <http://eudml.org/doc/116412>.

@article{Iwaniec2010,
abstract = {We give non-trivial upper bounds for the number of integral solutions, of given size, of a system of two quadratic form equations in five variables.},
affiliation = {Rutgers University 110, Frelinghuysen Road Piscataway NJ 08854, USA; School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road Mumbai 400005, India},
author = {Iwaniec, Henryk, Munshi, Ritabrata},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {quadratic form in five variables},
language = {eng},
number = {2},
pages = {403-419},
publisher = {Université Bordeaux 1},
title = {The circle method and pairs of quadratic forms},
url = {http://eudml.org/doc/116412},
volume = {22},
year = {2010},
}

TY - JOUR
AU - Iwaniec, Henryk
AU - Munshi, Ritabrata
TI - The circle method and pairs of quadratic forms
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 2
SP - 403
EP - 419
AB - We give non-trivial upper bounds for the number of integral solutions, of given size, of a system of two quadratic form equations in five variables.
LA - eng
KW - quadratic form in five variables
UR - http://eudml.org/doc/116412
ER -

References

top
  1. R. de la Bretèche; T.D. Browning, On Manin’s conjecture for singular del Pezzo surfaces of degree 4. I. Michigan Math. J. 55 (2007), no. 1, 51–80. Zbl1132.14019
  2. T.D. Browning, An overview of Manin’s conjecture for del Pezzo surfaces. Analytic Number Theory - A Tribute to Gauss and Dirichlet (Goettingen, 20th June - 24th June, 2005), Clay Mathematics Proceedings 7 (2007), 39–56. Zbl1134.14017
  3. W. Duke; J.B. Friedlander; H. Iwaniec, Bounds for automorphic L -functions. Invent. Math. 112 (1993), no. 1, 1–8. Zbl0765.11038
  4. D.R. Heath-Brown, A new form of the circle method, and its application to quadratic forms. J. Reine Angew. Math. 481 (1996), 149–206. Zbl0857.11049

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.