The circle method and pairs of quadratic forms
Henryk Iwaniec[1]; Ritabrata Munshi[2]
- [1] Rutgers University 110, Frelinghuysen Road Piscataway NJ 08854, USA
- [2] School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road Mumbai 400005, India
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 2, page 403-419
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topIwaniec, Henryk, and Munshi, Ritabrata. "The circle method and pairs of quadratic forms." Journal de Théorie des Nombres de Bordeaux 22.2 (2010): 403-419. <http://eudml.org/doc/116412>.
@article{Iwaniec2010,
abstract = {We give non-trivial upper bounds for the number of integral solutions, of given size, of a system of two quadratic form equations in five variables.},
affiliation = {Rutgers University 110, Frelinghuysen Road Piscataway NJ 08854, USA; School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road Mumbai 400005, India},
author = {Iwaniec, Henryk, Munshi, Ritabrata},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {quadratic form in five variables},
language = {eng},
number = {2},
pages = {403-419},
publisher = {Université Bordeaux 1},
title = {The circle method and pairs of quadratic forms},
url = {http://eudml.org/doc/116412},
volume = {22},
year = {2010},
}
TY - JOUR
AU - Iwaniec, Henryk
AU - Munshi, Ritabrata
TI - The circle method and pairs of quadratic forms
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 2
SP - 403
EP - 419
AB - We give non-trivial upper bounds for the number of integral solutions, of given size, of a system of two quadratic form equations in five variables.
LA - eng
KW - quadratic form in five variables
UR - http://eudml.org/doc/116412
ER -
References
top- R. de la Bretèche; T.D. Browning, On Manin’s conjecture for singular del Pezzo surfaces of degree 4. I. Michigan Math. J. 55 (2007), no. 1, 51–80. Zbl1132.14019
- T.D. Browning, An overview of Manin’s conjecture for del Pezzo surfaces. Analytic Number Theory - A Tribute to Gauss and Dirichlet (Goettingen, 20th June - 24th June, 2005), Clay Mathematics Proceedings 7 (2007), 39–56. Zbl1134.14017
- W. Duke; J.B. Friedlander; H. Iwaniec, Bounds for automorphic -functions. Invent. Math. 112 (1993), no. 1, 1–8. Zbl0765.11038
- D.R. Heath-Brown, A new form of the circle method, and its application to quadratic forms. J. Reine Angew. Math. 481 (1996), 149–206. Zbl0857.11049
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.