Steinitz classes of some abelian and nonabelian extensions of even degree

Alessandro Cobbe

Journal de Théorie des Nombres de Bordeaux (2010)

  • Volume: 22, Issue: 3, page 607-628
  • ISSN: 1246-7405

Abstract

top
The Steinitz class of a number field extension K / k is an ideal class in the ring of integers 𝒪 k of k , which, together with the degree [ K : k ] of the extension determines the 𝒪 k -module structure of 𝒪 K . We denote by R t ( k , G ) the set of classes which are Steinitz classes of a tamely ramified G -extension of k . We will say that those classes are realizable for the group G ; it is conjectured that the set of realizable classes is always a group.In this paper we will develop some of the ideas contained in [7] to obtain some results in the case of groups of even order. In particular we show that to study the realizable Steinitz classes for abelian groups, it is enough to consider the case of cyclic groups of 2 -power degree.

How to cite

top

Cobbe, Alessandro. "Steinitz classes of some abelian and nonabelian extensions of even degree." Journal de Théorie des Nombres de Bordeaux 22.3 (2010): 607-628. <http://eudml.org/doc/116423>.

@article{Cobbe2010,
abstract = {The Steinitz class of a number field extension $K/k$ is an ideal class in the ring of integers $\mathcal\{O\}_k$ of $k$, which, together with the degree $[K:k]$ of the extension determines the $\mathcal\{O\}_k$-module structure of $\mathcal\{O\}_K$. We denote by $\mathrm\{R\}_t(k,G)$ the set of classes which are Steinitz classes of a tamely ramified $G$-extension of $k$. We will say that those classes are realizable for the group $G$; it is conjectured that the set of realizable classes is always a group.In this paper we will develop some of the ideas contained in [7] to obtain some results in the case of groups of even order. In particular we show that to study the realizable Steinitz classes for abelian groups, it is enough to consider the case of cyclic groups of $2$-power degree.},
author = {Cobbe, Alessandro},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Steinitz classes; realizable classes; tame extensions of number fields; class field theory},
language = {eng},
number = {3},
pages = {607-628},
publisher = {Université Bordeaux 1},
title = {Steinitz classes of some abelian and nonabelian extensions of even degree},
url = {http://eudml.org/doc/116423},
volume = {22},
year = {2010},
}

TY - JOUR
AU - Cobbe, Alessandro
TI - Steinitz classes of some abelian and nonabelian extensions of even degree
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 3
SP - 607
EP - 628
AB - The Steinitz class of a number field extension $K/k$ is an ideal class in the ring of integers $\mathcal{O}_k$ of $k$, which, together with the degree $[K:k]$ of the extension determines the $\mathcal{O}_k$-module structure of $\mathcal{O}_K$. We denote by $\mathrm{R}_t(k,G)$ the set of classes which are Steinitz classes of a tamely ramified $G$-extension of $k$. We will say that those classes are realizable for the group $G$; it is conjectured that the set of realizable classes is always a group.In this paper we will develop some of the ideas contained in [7] to obtain some results in the case of groups of even order. In particular we show that to study the realizable Steinitz classes for abelian groups, it is enough to consider the case of cyclic groups of $2$-power degree.
LA - eng
KW - Steinitz classes; realizable classes; tame extensions of number fields; class field theory
UR - http://eudml.org/doc/116423
ER -

References

top
  1. C. Bruche, Classes de Steinitz d’extensions non abéliennes de degré p 3 . Acta Arith. 137 (2) (2009), 177–191. Zbl1229.11142MR2491536
  2. C. Bruche and B. Sodaïgui, On realizable Galois module classes and Steinitz classes of nonabelian extensions. J. Number Theory 128 (4) (2008), 954–978. Zbl1189.11051MR2400053
  3. N. Byott, C. Greither and B. Sodaïgui, Classes réalisables d’extensions non abéliennes. J. Reine Angew. Math. 601 (2006), 1–27. Zbl1137.11069MR2289203
  4. J. E. Carter, Steinitz classes of a nonabelian extension of degree p 3 . Colloq. Math. 71 (2) (1996), 297–303. Zbl0871.11074MR1414830
  5. J. E. Carter, Steinitz classes of nonabelian extensions of degree p 3 . Acta Arith. 78 (3) (1997), 297–303. Zbl0863.11070MR1432024
  6. J. E. Carter and B. Sodaïgui, Classes de Steinitz d’extensions quaternioniennes généralisées de degré 4 p r . J. Lond. Math. Soc. (2) 76 (2) (2007), 331–344. Zbl1130.11064MR2363419
  7. A. Cobbe, Steinitz classes of tamely ramified Galois extensions of algebraic number fields. J. Number Theory 130 (5) (2010), 1129–1154. Zbl1215.11108MR2607305
  8. A. Cobbe, Steinitz classes of tamely ramified Galois extensions of algebraic number fields. PhD thesis, Scuola Normale Superiore, Pisa, 2010. Zbl1215.11108MR2607305
  9. L. P. Endo, Steinitz classes of tamely ramified Galois extensions of algebraic number fields. PhD thesis, University of Illinois at Urbana-Champaign, 1975. MR2625297
  10. M. Godin and B. Sodaïgui, Classes de Steinitz d’extensions à groupe de Galois A 4 . J. Théor. Nombres Bordeaux 14 (1) (2002), 241–248. Zbl1026.11082MR1926000
  11. M. Godin and B. Sodaïgui, Module structure of rings of integers in octahedral extensions. Acta Arith. 109 (4) (2003), 321–327. Zbl1055.11068MR2008886
  12. S. Lang, Algebraic number theory. GTM 110, Springer-Verlag, New York, second edition, 1994. Zbl0811.11001MR1282723
  13. R. L. Long, Steinitz classes of cyclic extensions of prime degree. J. Reine Angew. Math. 250 (1971), 87–98. Zbl0229.12008MR289457
  14. R. L. Long, Steinitz classes of cyclic extensions of degree l r . Proc. Amer. Math. Soc. 49 (1975), 297–304. Zbl0312.12002MR366873
  15. R. Massy and B. Sodaïgui, Classes de Steinitz et extensions quaternioniennes. Proyecciones 16 (1) (1997), 1–13. Zbl1146.11327MR1475651
  16. L. R. McCulloh, Cyclic extensions without relative integral bases. Proc. Amer. Math. Soc. 17 (1966), 1191–1194. Zbl0144.29405MR225760
  17. L. R. McCulloh, Galois module structure of abelian extensions. J. Reine Angew. Math. 375/376 (1987), 259–306. Zbl0619.12008MR882300
  18. W. Narkiewicz, Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics, Springer-Verlag, Berlin, third edition, 2004 Zbl1159.11039MR2078267
  19. J. Neukirch, Class field theory. Volume 280 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1986. Zbl0587.12001MR819231
  20. J. J. Rotman, An introduction to the theory of groups. GTM 148, Springer-Verlag, New York, fourth edition, 1995. Zbl0810.20001MR1307623
  21. B. Sodaïgui, Classes de Steinitz d’extensions galoisiennes relatives de degré une puissance de 2 et problème de plongement, Illinois J. Math., 43 (1) (1999), 47–60. Zbl0922.11094MR1665716
  22. B. Sodaïgui, Relative Galois module structure and Steinitz classes of dihedral extensions of degree 8 . J. Algebra, 223 (1) (2000), 367–378. Zbl0953.11036MR1738267
  23. E. Soverchia, Steinitz classes of metacyclic extensions. J. London Math. Soc. (2), 66 (1) (2002), 61–72. Zbl1012.11095MR1911220

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.