Steinitz classes of some abelian and nonabelian extensions of even degree
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 3, page 607-628
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topCobbe, Alessandro. "Steinitz classes of some abelian and nonabelian extensions of even degree." Journal de Théorie des Nombres de Bordeaux 22.3 (2010): 607-628. <http://eudml.org/doc/116423>.
@article{Cobbe2010,
abstract = {The Steinitz class of a number field extension $K/k$ is an ideal class in the ring of integers $\mathcal\{O\}_k$ of $k$, which, together with the degree $[K:k]$ of the extension determines the $\mathcal\{O\}_k$-module structure of $\mathcal\{O\}_K$. We denote by $\mathrm\{R\}_t(k,G)$ the set of classes which are Steinitz classes of a tamely ramified $G$-extension of $k$. We will say that those classes are realizable for the group $G$; it is conjectured that the set of realizable classes is always a group.In this paper we will develop some of the ideas contained in [7] to obtain some results in the case of groups of even order. In particular we show that to study the realizable Steinitz classes for abelian groups, it is enough to consider the case of cyclic groups of $2$-power degree.},
author = {Cobbe, Alessandro},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Steinitz classes; realizable classes; tame extensions of number fields; class field theory},
language = {eng},
number = {3},
pages = {607-628},
publisher = {Université Bordeaux 1},
title = {Steinitz classes of some abelian and nonabelian extensions of even degree},
url = {http://eudml.org/doc/116423},
volume = {22},
year = {2010},
}
TY - JOUR
AU - Cobbe, Alessandro
TI - Steinitz classes of some abelian and nonabelian extensions of even degree
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 3
SP - 607
EP - 628
AB - The Steinitz class of a number field extension $K/k$ is an ideal class in the ring of integers $\mathcal{O}_k$ of $k$, which, together with the degree $[K:k]$ of the extension determines the $\mathcal{O}_k$-module structure of $\mathcal{O}_K$. We denote by $\mathrm{R}_t(k,G)$ the set of classes which are Steinitz classes of a tamely ramified $G$-extension of $k$. We will say that those classes are realizable for the group $G$; it is conjectured that the set of realizable classes is always a group.In this paper we will develop some of the ideas contained in [7] to obtain some results in the case of groups of even order. In particular we show that to study the realizable Steinitz classes for abelian groups, it is enough to consider the case of cyclic groups of $2$-power degree.
LA - eng
KW - Steinitz classes; realizable classes; tame extensions of number fields; class field theory
UR - http://eudml.org/doc/116423
ER -
References
top- C. Bruche, Classes de Steinitz d’extensions non abéliennes de degré . Acta Arith. 137 (2) (2009), 177–191. Zbl1229.11142MR2491536
- C. Bruche and B. Sodaïgui, On realizable Galois module classes and Steinitz classes of nonabelian extensions. J. Number Theory 128 (4) (2008), 954–978. Zbl1189.11051MR2400053
- N. Byott, C. Greither and B. Sodaïgui, Classes réalisables d’extensions non abéliennes. J. Reine Angew. Math. 601 (2006), 1–27. Zbl1137.11069MR2289203
- J. E. Carter, Steinitz classes of a nonabelian extension of degree . Colloq. Math. 71 (2) (1996), 297–303. Zbl0871.11074MR1414830
- J. E. Carter, Steinitz classes of nonabelian extensions of degree . Acta Arith. 78 (3) (1997), 297–303. Zbl0863.11070MR1432024
- J. E. Carter and B. Sodaïgui, Classes de Steinitz d’extensions quaternioniennes généralisées de degré . J. Lond. Math. Soc. (2) 76 (2) (2007), 331–344. Zbl1130.11064MR2363419
- A. Cobbe, Steinitz classes of tamely ramified Galois extensions of algebraic number fields. J. Number Theory 130 (5) (2010), 1129–1154. Zbl1215.11108MR2607305
- A. Cobbe, Steinitz classes of tamely ramified Galois extensions of algebraic number fields. PhD thesis, Scuola Normale Superiore, Pisa, 2010. Zbl1215.11108MR2607305
- L. P. Endo, Steinitz classes of tamely ramified Galois extensions of algebraic number fields. PhD thesis, University of Illinois at Urbana-Champaign, 1975. MR2625297
- M. Godin and B. Sodaïgui, Classes de Steinitz d’extensions à groupe de Galois . J. Théor. Nombres Bordeaux 14 (1) (2002), 241–248. Zbl1026.11082MR1926000
- M. Godin and B. Sodaïgui, Module structure of rings of integers in octahedral extensions. Acta Arith. 109 (4) (2003), 321–327. Zbl1055.11068MR2008886
- S. Lang, Algebraic number theory. GTM 110, Springer-Verlag, New York, second edition, 1994. Zbl0811.11001MR1282723
- R. L. Long, Steinitz classes of cyclic extensions of prime degree. J. Reine Angew. Math. 250 (1971), 87–98. Zbl0229.12008MR289457
- R. L. Long, Steinitz classes of cyclic extensions of degree . Proc. Amer. Math. Soc. 49 (1975), 297–304. Zbl0312.12002MR366873
- R. Massy and B. Sodaïgui, Classes de Steinitz et extensions quaternioniennes. Proyecciones 16 (1) (1997), 1–13. Zbl1146.11327MR1475651
- L. R. McCulloh, Cyclic extensions without relative integral bases. Proc. Amer. Math. Soc. 17 (1966), 1191–1194. Zbl0144.29405MR225760
- L. R. McCulloh, Galois module structure of abelian extensions. J. Reine Angew. Math. 375/376 (1987), 259–306. Zbl0619.12008MR882300
- W. Narkiewicz, Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics, Springer-Verlag, Berlin, third edition, 2004 Zbl1159.11039MR2078267
- J. Neukirch, Class field theory. Volume 280 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1986. Zbl0587.12001MR819231
- J. J. Rotman, An introduction to the theory of groups. GTM 148, Springer-Verlag, New York, fourth edition, 1995. Zbl0810.20001MR1307623
- B. Sodaïgui, Classes de Steinitz d’extensions galoisiennes relatives de degré une puissance de 2 et problème de plongement, Illinois J. Math., 43 (1) (1999), 47–60. Zbl0922.11094MR1665716
- B. Sodaïgui, Relative Galois module structure and Steinitz classes of dihedral extensions of degree . J. Algebra, 223 (1) (2000), 367–378. Zbl0953.11036MR1738267
- E. Soverchia, Steinitz classes of metacyclic extensions. J. London Math. Soc. (2), 66 (1) (2002), 61–72. Zbl1012.11095MR1911220
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.