Steinitz classes of a nonabelian extension of degree p 3

James Carter

Colloquium Mathematicae (1996)

  • Volume: 71, Issue: 2, page 297-303
  • ISSN: 0010-1354

How to cite

top

Carter, James. "Steinitz classes of a nonabelian extension of degree $p^3$." Colloquium Mathematicae 71.2 (1996): 297-303. <http://eudml.org/doc/210443>.

@article{Carter1996,
author = {Carter, James},
journal = {Colloquium Mathematicae},
keywords = {tamely ramified extensions; Steinitz classes; Galois extension},
language = {eng},
number = {2},
pages = {297-303},
title = {Steinitz classes of a nonabelian extension of degree $p^3$},
url = {http://eudml.org/doc/210443},
volume = {71},
year = {1996},
}

TY - JOUR
AU - Carter, James
TI - Steinitz classes of a nonabelian extension of degree $p^3$
JO - Colloquium Mathematicae
PY - 1996
VL - 71
IS - 2
SP - 297
EP - 303
LA - eng
KW - tamely ramified extensions; Steinitz classes; Galois extension
UR - http://eudml.org/doc/210443
ER -

References

top
  1. [A] E. Artin, Questions de base minimale dans la théorie des nombres algébriques, in: Colloq. Internat. CNRS 24, Paris, 1950, 19-20. Zbl0039.02904
  2. [FT] A. Fröhlich and M. J. Taylor, Algebraic Number Theory, Cambridge Univ. Press, 1991. 
  3. [H] E. Hecke, Lectures on the Theory of Algebraic Numbers, Springer, 1981. 
  4. [J] G. J. Janusz, Algebraic Number Fields, Academic Press, 1973. Zbl0307.12001
  5. [L] S. Lang, Algebraic Number Theory, Springer, 1986. Zbl0601.12001
  6. [L1] R. L. Long, Steinitz classes of cyclic extensions of prime degree, J. Reine Angew. Math. 250 (1971), 87-98. Zbl0229.12008
  7. [L2] R. L. Long, Steinitz classes of cyclic extensions of degree l r , Proc. Amer. Math. Soc. 49 (1975), 297-304. Zbl0312.12002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.