Manin’s conjecture for a singular sextic del Pezzo surface

Daniel Loughran[1]

  • [1] Department of Mathematics University Walk Bristol UK, BS8 1TW

Journal de Théorie des Nombres de Bordeaux (2010)

  • Volume: 22, Issue: 3, page 675-701
  • ISSN: 1246-7405

Abstract

top
We prove Manin’s conjecture for a del Pezzo surface of degree six which has one singularity of type A 2 . Moreover, we achieve a meromorphic continuation and explicit expression of the associated height zeta function.

How to cite

top

Loughran, Daniel. "Manin’s conjecture for a singular sextic del Pezzo surface." Journal de Théorie des Nombres de Bordeaux 22.3 (2010): 675-701. <http://eudml.org/doc/116427>.

@article{Loughran2010,
abstract = {We prove Manin’s conjecture for a del Pezzo surface of degree six which has one singularity of type $\mathbf\{A\}_2$. Moreover, we achieve a meromorphic continuation and explicit expression of the associated height zeta function.},
affiliation = {Department of Mathematics University Walk Bristol UK, BS8 1TW},
author = {Loughran, Daniel},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {del Pezzo surface; rational points; height zeta function},
language = {eng},
number = {3},
pages = {675-701},
publisher = {Université Bordeaux 1},
title = {Manin’s conjecture for a singular sextic del Pezzo surface},
url = {http://eudml.org/doc/116427},
volume = {22},
year = {2010},
}

TY - JOUR
AU - Loughran, Daniel
TI - Manin’s conjecture for a singular sextic del Pezzo surface
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 3
SP - 675
EP - 701
AB - We prove Manin’s conjecture for a del Pezzo surface of degree six which has one singularity of type $\mathbf{A}_2$. Moreover, we achieve a meromorphic continuation and explicit expression of the associated height zeta function.
LA - eng
KW - del Pezzo surface; rational points; height zeta function
UR - http://eudml.org/doc/116427
ER -

References

top
  1. R. de la Bretèche and T. D. Browning, On Manin’s conjecture for singular del Pezzo surfaces of degree four, I. Michigan Mathematical Journal 55 (2007), 51–80. Zbl1132.14019MR2320172
  2. T. D. Browning, An overview of Manin’s conjecture for del Pezzo surfaces. Analytic number theory - A tribute to Gauss and Dirichlet (Goettingen, 20th June - 24th June, 2005), Clay Mathematics Proceedings 7 (2007), 39–56. Zbl1134.14017MR2362193
  3. D. F. Coray and M. A. Tsfasman, Arithmetic on singular Del Pezzo surfces. Proc. London Math. Soc (3) 57(1) (1988), 25–87. Zbl0653.14018MR940430
  4. J.-L. Colliot-Thélène and J.-J. Sansuc, La descente sur les variétés rationnelles. II. Duke Math. J. 54(2) (1987), 375–492. Zbl0659.14028MR899402
  5. A. Chambert-Loir and Y. Tschinkel, On the Distribution of points of bounded height on equivariant compactifications of vector groups. Invent. Math. 148 (2002), 421–452. Zbl1067.11036MR1906155
  6. U. Derenthal, Singular Del Pezzo surfaces whose universal torsors are hypersurfaces. arXiv:math.AG/0604194 (2006). 
  7. U. Derenthal, On a constant arising in Manin’s Conjecture for Del Pezzo surfaces. Math. Res. Letters 14 (2007), 481–489. Zbl1131.14042MR2318651
  8. U. Derenthal and D. Loughran, Singular del Pezzo surfaces that are equivariant compactifications. Proceedings of Hausdorff Trimester on Diophantine equations in: Zapiski Nauchnykh Seminarov (POMI) 377 (2010), 26–43. Zbl1296.14016
  9. U. Derenthal and Y. Tschinkel, Universal torsors over Del Pezzo surfaces and rational points. Equidistribution in Number theory, An Introduction, (A. Granville, Z. Rudnick eds.), NATO Science Series II, 237, Springer, (2007), 169–196. Zbl1143.14017MR2290499
  10. J. Franke, Y. I. Manin and Y. Tschinkel, Rational Points of Bounded Height on Fano Varieties. Invent. Math 95 (1989), 421–435. Zbl0674.14012MR974910
  11. R. Hartshorne, Algebraic Geometry. Springer-Verlag, New York, 1977. Zbl0367.14001MR463157
  12. D. R. Heath-Brown, The fourth power moment of the Riemann zeta function. Proc. London Math. Soc. 38 (1979), 385–422. Zbl0403.10018MR532980
  13. Y. Hu and S. Keel, Mori dream spaces and GIT. Michigan Math. J., dedicated to William Fulton on the occasion of his 60th birthday, 48 (2000) 331–348. Zbl1077.14554MR1786494
  14. Y. I. Manin, Cubic Forms. North-Holland Mathematical Library 4, North-Holland Publishing Co., 2nd ed. 1986. Zbl0582.14010MR833513
  15. E. Peyre, Hauteurs et measures de Tamagawa sur les variétiés de Fano. Duke Math. J., 79(1) (1995), 101–218. Zbl0901.14025MR1340296
  16. P. Salberger, Tamagawa measures on universal torsors and points of bounded height on Fano varieties. Astérisque, Nombre et répartition de points de hauteur bornnée (Paris, 1996), 251 (1998), 91–258. Zbl0959.14007MR1679841
  17. A. Skorobogatov, Torsors and rational points. Cambridge University press, 2001. Zbl0972.14015MR1845760
  18. G. Tenenbaum, Introduction to analytic and probabilistic number theory. Cambridge University press, 1995. Zbl0831.11001MR1342300
  19. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function. Oxford University press, 2nd ed. edited by D.R.Heath-Brown, 1986. Zbl0601.10026MR882550

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.