A generalization of Voronoï’s Theorem to algebraic lattices
- [1] Department of Mathematics, Graduate School of Science, Osaka-University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 3, page 727-740
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topOkuda, Kenji, and Yano, Syouji. "A generalization of Voronoï’s Theorem to algebraic lattices." Journal de Théorie des Nombres de Bordeaux 22.3 (2010): 727-740. <http://eudml.org/doc/116430>.
@article{Okuda2010,
abstract = {Let $K$ be an algebraic number field and $\mathcal\{O\}_\{K\}$ the ring of integers of $K$. In this paper, we prove an analogue of Voronoï’s theorem for $\mathcal\{O\}_\{K\}$-lattices and the finiteness of the number of similar isometry classes of perfect $\mathcal\{O\}_\{K\}$-lattices.},
affiliation = {Department of Mathematics, Graduate School of Science, Osaka-University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan},
author = {Okuda, Kenji, Yano, Syouji},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Voronoi's theorem; lattices on algebraic number fields; extreme, eutactic, perfect lattices},
language = {eng},
number = {3},
pages = {727-740},
publisher = {Université Bordeaux 1},
title = {A generalization of Voronoï’s Theorem to algebraic lattices},
url = {http://eudml.org/doc/116430},
volume = {22},
year = {2010},
}
TY - JOUR
AU - Okuda, Kenji
AU - Yano, Syouji
TI - A generalization of Voronoï’s Theorem to algebraic lattices
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 3
SP - 727
EP - 740
AB - Let $K$ be an algebraic number field and $\mathcal{O}_{K}$ the ring of integers of $K$. In this paper, we prove an analogue of Voronoï’s theorem for $\mathcal{O}_{K}$-lattices and the finiteness of the number of similar isometry classes of perfect $\mathcal{O}_{K}$-lattices.
LA - eng
KW - Voronoi's theorem; lattices on algebraic number fields; extreme, eutactic, perfect lattices
UR - http://eudml.org/doc/116430
ER -
References
top- R.Coulangeon, Voronoï Theory over Algebraic Number Fields. Monographies de l’Enseignement Mathématique 37 (2001), 147–162. Zbl1139.11321MR1878749
- P.Humbert, Théorie de la réduction des formes quadratiques définies positives dans un corps algébrique fini. Com. Math. Helv. 12 (1939–1940), 263–306. MR 2:148a. Zbl0023.19905MR3002
- M.Koecher, Beitrge zu einer Reduktionstheorie in Positivittsbereichen. I. Math.Ann. 141 (1960), 384–432. Zbl0095.25301MR124527
- M.Koecher, Beitrge zu einer Reduktionstheorie in Positivittsbereichen. II. Math.Ann. 144 (1961), 175–182. MR MR0136771(25232) Zbl0099.01701MR136771
- M.Laca, N.S.Larsen and S.Neshveyev, On Bost-Connes type systems for number fields. J.Number Theory 129 (2009), 325–338. Zbl1175.46061MR2473881
- A.Leibak, On additive generalization of Voronoï’s theory to algebraic number fields. Proc. Estonian Acad. Sci. Phys. Math. 54 (2005), no.4,195–211. Zbl1095.11022MR2190027
- J.Martinet, Perfect Lattices in Euclidean Spaces. Grundlehren der Mathematischen Wissenschaften 327, Springer Verlag, 2003. Zbl1017.11031MR1957723
- I.Satake, Nijikeishiki no Riron (Theory of Quadratic Forms), (in Japanese). Lectures in Mathematical Science The University of Tokyo, Graduate School of Mathematical Sciences. 22 (reprint 2003).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.