Non zero flux solutions of kinetic equations

Miguel Escobedo[1]

  • [1] Departamento de Matemáticas Facultad de Ciencias y Tecnología Universidad del País Vasco Barrio Sarriena s/n 48940 Lejona (Vizcaya) Spain

Séminaire Équations aux dérivées partielles (2009-2010)

  • Volume: 2009-2010, page 1-15

How to cite

top

Escobedo, Miguel. "Non zero flux solutions of kinetic equations." Séminaire Équations aux dérivées partielles 2009-2010 (2009-2010): 1-15. <http://eudml.org/doc/116443>.

@article{Escobedo2009-2010,
affiliation = {Departamento de Matemáticas Facultad de Ciencias y Tecnología Universidad del País Vasco Barrio Sarriena s/n 48940 Lejona (Vizcaya) Spain},
author = {Escobedo, Miguel},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {kinetic equations; Uehling Uhlenbeck equation; coagulation equation; existence theorem},
language = {eng},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Non zero flux solutions of kinetic equations},
url = {http://eudml.org/doc/116443},
volume = {2009-2010},
year = {2009-2010},
}

TY - JOUR
AU - Escobedo, Miguel
TI - Non zero flux solutions of kinetic equations
JO - Séminaire Équations aux dérivées partielles
PY - 2009-2010
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2009-2010
SP - 1
EP - 15
LA - eng
KW - kinetic equations; Uehling Uhlenbeck equation; coagulation equation; existence theorem
UR - http://eudml.org/doc/116443
ER -

References

top
  1. R. Baier, T. Stockkamp, Kinetic equations for Bose-Einstein condensates from the 2PI effective action, arXiv:hep-ph/0412310. 
  2. A. M. Balk, V. E. Zakharov, Stability of Weak-Turbulence Kolmogorov Spectra in Nonlinear Waves and Weak Turbulence, V. E. Zakharov Ed., A. M. S. Translations Series 2, Vol. 182, 1998, 1-81. Zbl0898.76047MR1618499
  3. W. H. Carothers, Faraday Soc. Trans. 32, 1936, 39–53. 
  4. P. G. J. van Dongen, M.H. Ernst, Cluster size distribution in irreversible aggregation at large times J. Phys. A 18 (1985) 2779–2793. MR811992
  5. P. G. J. van Dongen, On the possible ocurrence of instantaneous gelation in Smoluchowski’s coagulation equation, J. Phys. A: Math. Gen. 20 (1987), 1889–1904. 
  6. P. B. Dubovski, I. W. Stewart, Existence, Uniqueness and Mass Conservation for the Coagulation-Fragmentation Equation, Math. Meth. Appl. Sciences 19, (1996), 571–591. Zbl0852.45016MR1385155
  7. M. H. Ernst, R. M. Ziff & E. M. Hendriks, Coagulation processes with a phase transition, J. of Colloid and Interface Sci. 97, (1984), 266–277. 
  8. M. Escobedo, S. Mischler & B. Perthame, Gelation in coagulation and fragmentation models. Commun. Math. Phys. 231 (2002) 1, 157-188. Zbl1016.82027MR1947695
  9. M. Escobedo, S. Mischler & J. J. L. Velázquez, On the fundamental solution of the linearized Uehling-Uhlenbeck equation, Arch. Rat. Mech. Anal. 186, (2007), 309–349. Zbl05211791MR2342205
  10. M. Escobedo, S. Mischler & J. J. L. Velázquez, Singular Solutions for the Uehling Uhlenbeck Equation, Proc. Roy. Soc. Edinburgh, 138A, (2008), 67–107. Zbl1148.35015MR2388938
  11. M. Escobedo, & J. J. L. Velázquez, On a linearised coagulation equation, Commun. Math. Phys. 297 3, (2010) 237–267. 
  12. M. Escobedo, & J. J. L. Velázquez, Local well posedness for a linear coagulation equation, preprint 2009, arXiv:0911.1641. Submitted for publication. Zbl1316.45010
  13. P. J. Flory, Molecular Size Distribution in Three Dimensional Polymers I, II, III. J. Am. Chem. Soc. 63 (1941) 3083–3100. 
  14. P. J. Flory, Fundamental Principles of Condensation Polymerization. J. Phys. Chem. 46 (1942) 137-197. 
  15. I. Jeon, Existence of gelling solutions for coagulation-fragmentation equations, Comm. Math. Phys. 194 (1998), 541–567. Zbl0910.60083MR1631473
  16. F. Leyvraz, Scaling Theory and Exactly Solved Models in the Kinetics of Irreversible Aggregation, Phys. Reports 383 (2003) Issues 2-3, 95–212. 
  17. F. Leyvraz, H. R. Tschudi, Singularities in the kinetics of coagulation processes, J. Phys. A 14, (1981), 3389–3405. Zbl0481.92020MR639565
  18. X. Lu, The Boltzmann equation for Bose Einstein particles: Velocity concentration and convergence to equilibrium, J. Stat. Phys. 119, (2005), 1027–1067. Zbl1135.82029MR2157856
  19. N. I. Muskhelishvili, Singular Integral Equations. Translated from second edition, Moscow (1946) by J.R.M. Radok. Noordhof, Groningen. (1953) Zbl0051.33203MR355494
  20. B. Noble, Methods based on the Wiener-Hopf Technique. Second edition, Chelsea Publishing Company, New York. (1988) Zbl0657.35001
  21. L. W. Nordheim, On the Kinetic Method in the New Statistics and its Applications in the Electron Theory of Conductivity, Proc. R. Soc. London A 119, (1928), 689–698. Zbl54.0988.05
  22. M. von Smoluchowski, Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen Z. Phys. 17 (1916), 557-585. 
  23. H. Spohn, Kinetic of the Bose-Einstein condensation, Physica D, 239 (2010), 627–634. Zbl1186.82052MR2601928
  24. W. H. Stockmayer, Theory of Molecular Size Distribution and Gel Formation in Branched-Chain Polymers. J. Chem. Phys. 11 (1943) 45–55. 
  25. E. A. Uehling, G. E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases, Physical Review 43 (1933) 552-561. Zbl0006.33404
  26. E. Zaremba, T. Nikuni, A. Griffin, Dynamics of Trapped Bose Gases at Finite Temperatures J. Low Temp. Phys. 116 (1999). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.