Non zero flux solutions of kinetic equations
- [1] Departamento de Matemáticas Facultad de Ciencias y Tecnología Universidad del País Vasco Barrio Sarriena s/n 48940 Lejona (Vizcaya) Spain
Séminaire Équations aux dérivées partielles (2009-2010)
- Volume: 2009-2010, page 1-15
Access Full Article
topHow to cite
topEscobedo, Miguel. "Non zero flux solutions of kinetic equations." Séminaire Équations aux dérivées partielles 2009-2010 (2009-2010): 1-15. <http://eudml.org/doc/116443>.
@article{Escobedo2009-2010,
affiliation = {Departamento de Matemáticas Facultad de Ciencias y Tecnología Universidad del País Vasco Barrio Sarriena s/n 48940 Lejona (Vizcaya) Spain},
author = {Escobedo, Miguel},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {kinetic equations; Uehling Uhlenbeck equation; coagulation equation; existence theorem},
language = {eng},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Non zero flux solutions of kinetic equations},
url = {http://eudml.org/doc/116443},
volume = {2009-2010},
year = {2009-2010},
}
TY - JOUR
AU - Escobedo, Miguel
TI - Non zero flux solutions of kinetic equations
JO - Séminaire Équations aux dérivées partielles
PY - 2009-2010
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2009-2010
SP - 1
EP - 15
LA - eng
KW - kinetic equations; Uehling Uhlenbeck equation; coagulation equation; existence theorem
UR - http://eudml.org/doc/116443
ER -
References
top- R. Baier, T. Stockkamp, Kinetic equations for Bose-Einstein condensates from the 2PI effective action, arXiv:hep-ph/0412310.
- A. M. Balk, V. E. Zakharov, Stability of Weak-Turbulence Kolmogorov Spectra in Nonlinear Waves and Weak Turbulence, V. E. Zakharov Ed., A. M. S. Translations Series 2, Vol. 182, 1998, 1-81. Zbl0898.76047MR1618499
- W. H. Carothers, Faraday Soc. Trans. 32, 1936, 39–53.
- P. G. J. van Dongen, M.H. Ernst, Cluster size distribution in irreversible aggregation at large times J. Phys. A 18 (1985) 2779–2793. MR811992
- P. G. J. van Dongen, On the possible ocurrence of instantaneous gelation in Smoluchowski’s coagulation equation, J. Phys. A: Math. Gen. 20 (1987), 1889–1904.
- P. B. Dubovski, I. W. Stewart, Existence, Uniqueness and Mass Conservation for the Coagulation-Fragmentation Equation, Math. Meth. Appl. Sciences 19, (1996), 571–591. Zbl0852.45016MR1385155
- M. H. Ernst, R. M. Ziff & E. M. Hendriks, Coagulation processes with a phase transition, J. of Colloid and Interface Sci. 97, (1984), 266–277.
- M. Escobedo, S. Mischler & B. Perthame, Gelation in coagulation and fragmentation models. Commun. Math. Phys. 231 (2002) 1, 157-188. Zbl1016.82027MR1947695
- M. Escobedo, S. Mischler & J. J. L. Velázquez, On the fundamental solution of the linearized Uehling-Uhlenbeck equation, Arch. Rat. Mech. Anal. 186, (2007), 309–349. Zbl05211791MR2342205
- M. Escobedo, S. Mischler & J. J. L. Velázquez, Singular Solutions for the Uehling Uhlenbeck Equation, Proc. Roy. Soc. Edinburgh, 138A, (2008), 67–107. Zbl1148.35015MR2388938
- M. Escobedo, & J. J. L. Velázquez, On a linearised coagulation equation, Commun. Math. Phys. 297 3, (2010) 237–267.
- M. Escobedo, & J. J. L. Velázquez, Local well posedness for a linear coagulation equation, preprint 2009, arXiv:0911.1641. Submitted for publication. Zbl1316.45010
- P. J. Flory, Molecular Size Distribution in Three Dimensional Polymers I, II, III. J. Am. Chem. Soc. 63 (1941) 3083–3100.
- P. J. Flory, Fundamental Principles of Condensation Polymerization. J. Phys. Chem. 46 (1942) 137-197.
- I. Jeon, Existence of gelling solutions for coagulation-fragmentation equations, Comm. Math. Phys. 194 (1998), 541–567. Zbl0910.60083MR1631473
- F. Leyvraz, Scaling Theory and Exactly Solved Models in the Kinetics of Irreversible Aggregation, Phys. Reports 383 (2003) Issues 2-3, 95–212.
- F. Leyvraz, H. R. Tschudi, Singularities in the kinetics of coagulation processes, J. Phys. A 14, (1981), 3389–3405. Zbl0481.92020MR639565
- X. Lu, The Boltzmann equation for Bose Einstein particles: Velocity concentration and convergence to equilibrium, J. Stat. Phys. 119, (2005), 1027–1067. Zbl1135.82029MR2157856
- N. I. Muskhelishvili, Singular Integral Equations. Translated from second edition, Moscow (1946) by J.R.M. Radok. Noordhof, Groningen. (1953) Zbl0051.33203MR355494
- B. Noble, Methods based on the Wiener-Hopf Technique. Second edition, Chelsea Publishing Company, New York. (1988) Zbl0657.35001
- L. W. Nordheim, On the Kinetic Method in the New Statistics and its Applications in the Electron Theory of Conductivity, Proc. R. Soc. London A 119, (1928), 689–698. Zbl54.0988.05
- M. von Smoluchowski, Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen Z. Phys. 17 (1916), 557-585.
- H. Spohn, Kinetic of the Bose-Einstein condensation, Physica D, 239 (2010), 627–634. Zbl1186.82052MR2601928
- W. H. Stockmayer, Theory of Molecular Size Distribution and Gel Formation in Branched-Chain Polymers. J. Chem. Phys. 11 (1943) 45–55.
- E. A. Uehling, G. E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases, Physical Review 43 (1933) 552-561. Zbl0006.33404
- E. Zaremba, T. Nikuni, A. Griffin, Dynamics of Trapped Bose Gases at Finite Temperatures J. Low Temp. Phys. 116 (1999).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.