Quantum transfer operators and quantum scattering
- [1] Institut de Physique Théorique CEA/DSM/PhT (URA 2306 du CNRS) CE-Saclay 91191 Gif-sur-Yvette France Institute of Advanced Study Princeton, NJ 08540 USA
Séminaire Équations aux dérivées partielles (2009-2010)
- Volume: 2009-2010, page 1-18
Access Full Article
topHow to cite
topNonnenmacher, Stéphane. "Quantum transfer operators and quantum scattering." Séminaire Équations aux dérivées partielles 2009-2010 (2009-2010): 1-18. <http://eudml.org/doc/116447>.
@article{Nonnenmacher2009-2010,
affiliation = {Institut de Physique Théorique CEA/DSM/PhT (URA 2306 du CNRS) CE-Saclay 91191 Gif-sur-Yvette France Institute of Advanced Study Princeton, NJ 08540 USA},
author = {Nonnenmacher, Stéphane},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-18},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Quantum transfer operators and quantum scattering},
url = {http://eudml.org/doc/116447},
volume = {2009-2010},
year = {2009-2010},
}
TY - JOUR
AU - Nonnenmacher, Stéphane
TI - Quantum transfer operators and quantum scattering
JO - Séminaire Équations aux dérivées partielles
PY - 2009-2010
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2009-2010
SP - 1
EP - 18
LA - eng
UR - http://eudml.org/doc/116447
ER -
References
top- V. Baladi, Positive Transfer Operators and Decay of Correlations, Book Advanced Series in Nonlinear Dynamics, Vol 16, World Scientific, Singapore (2000) Zbl1012.37015MR1793194
- R. Blümel and W. P. Reinhardt, Chaos in Atomic Physics, Cambridge University Press, Cambridge, 1997 Zbl0939.81044MR1627898
- E. B. Bogomolny, Semiclassical quantization of multidimensional systems, Nonlinearity 5 (1992) 805–866 Zbl0749.35035MR1174220
- F. Borgonovi, I. Guarneri and D. L. Shepelyansky, Statistics of quantum lifetimes in a classically chaotic system, Phys. Rev. A 43 (1991) 4517–4520
- R. Bowen, One-dimensional hyperbolic sets for flows, J. Diff. Equ. 12 (1972) 173–179 Zbl0242.58005MR336762
- H. Christianson, Quantum monodromy and non-concentration near a closed semi-hyperbolic orbit, preprint 2009 MR2625926
- P. Cvitanović, P. Rosenquist, G. Vattay and H.H. Rugh, A Fredholm determinant for semiclassical quantization, CHAOS 3 (1993) 619–636 Zbl1055.81549MR1256315
- M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the semi-classical limit, Cambridge University Press, Cambridge, 1999. Zbl0926.35002MR1735654
- E. Doron and U. Smilansky, Semiclassical quantization of chaotic billiards: a scattering theory approach, Nonlinearity 5 (1992) 1055–1084; C. Rouvinez and U. Smilansky, A scattering approach to the quantization of Hamiltonians in two dimensions – application to the wedge billiard, J. Phys. A 28 (1995) 77–104 Zbl0770.58043MR1187738
- L.C. Evans and M. Zworski, Lectures on Semiclassical Analysis, Version 0.3.2, http://math.berkeley.edu/zworski/semiclassical.pdf
- P. Gaspard and S. A. Rice, Semiclassical quantization of the scattering from a classical chaotic repeller, J. Chem. Phys. 90(4) 2242–2254 MR980393
- B. Georgeot and R. E. Prange, Fredholm theory for quasiclassical scattering, Phys. Rev. Lett. 74 (1995) 4110-4113; A. M. Ozorio de Almeida and R. O. Vallejos, Decomposition of Resonant Scatterers by Surfaces of Section, Ann. Phys. (NY) 278 (1999) 86–108 Zbl1020.81937MR1329478
- C. Gérard, Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes. Mémoires de la Société Mathématique de France Sér. 2, 31(1988) 1–146 Zbl0654.35081MR998698
- S. Gouëzel and C. Liverani,Banach spaces adapted to Anosov systems, Ergod. Th. Dyn. Sys. 26 (2006) 189–217; V. Baladi and M. Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier, 57 (2007) 127–154 Zbl1088.37010MR2201945
- M. Ikawa, Decay of solutions of the wave equation in the exterior of several convex bodies, Ann. Inst. Fourier, 38 (1988) 113–146 Zbl0636.35045MR949013
- J.P. Keating, M. Novaes, S.D. Prado and M. Sieber, Semiclassical structure of quantum fractal eigenstates, Phys. Rev. Lett. 97 (2006) 150406; S. Nonnenmacher and M. Rubin, Resonant eigenstates for a quantized chaotic system, Nonlinearity 20 (2007) 1387–1420.
- K. Nakamura and T. Harayama, Quantum Chaos and Quantum Dots, Oxford University Press, Oxford, 2004
- S. Nonnenmacher, J. Sjöstrand and M. Zworski, From open quantum systems to open quantum maps, preprint, arXiv:1004.3361 Zbl1223.81127MR2793928
- S. Nonnenmacher and M. Zworski, Distribution of resonances for open quantum maps, Comm. Math. Phys. 269 (2007) 311–365 Zbl1114.81043MR2274550
- S. Nonnenmacher and M. Zworski, Quantum decay rates in chaotic scattering, Acta Math. 203 (2009) 149–233 Zbl1226.35061MR2570070
- V. Petkov and L. Stoyanov, Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function, C. R. Acad. Sci. Paris, Ser.I, 345 (2007) 567–572 Zbl1125.37013MR2374466
- M. Pollicott, On the rate of mixing of Axiom A flows, Invent. Math. 81 (1985) 413–426; D. Ruelle, Resonances for Axiom A flows, J. Diff. Geom. 25 (1987) 99–116 Zbl0591.58025MR807065
- T. Prosen, General quantum surface-of-section method, J. Phys.A 28 (1995) 4133-4155 Zbl0860.58019MR1352158
- H. Schomerus and J. Tworzydlo, Quantum-to-classical crossover of quasi-bound states in open quantum systems, Phys. Rev. Lett. 93 (2004) 154102
- J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J. 60 (1990) 1–57 Zbl0702.35188MR1047116
- J. Sjöstrand, A trace formula and review of some estimates for resonances, in Microlocal analysis and spectral theory (Lucca, 1996), 377–437, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 490, Kluwer Acad. Publ., Dordrecht, 1997. Zbl0877.35090MR1451399
- J. Sjöstrand and M. Zworski, Quantum monodromy and semiclassical trace formulae, J. Math. Pure Appl. 81 (2002) 1–33 Zbl1038.58033MR1994881
- J. Sjöstrand and M. Zworski, Fractal upper bounds on the density of semiclassical resonances, Duke Math. J. 137 (2007) 381–459. Zbl1201.35189MR2309150
- J. Sjöstrand and M. Zworski, Elementary linear algebra for advanced spectral problems, Annales de l’Institut Fourier 57(2007) 2095–2141 Zbl1140.15009MR2394537
- H.-J. Stöckmann, Scattering Properties of Chaotic Microwave Billiards, Acta Polonica A 116 (2009) 783–789
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.