Elementary linear algebra for advanced spectral problems
Johannes Sjöstrand[1]; Maciej Zworski[2]
- [1] École Polytechnique Centre de Mathématiques Laurent Schwartz UMR 7460, CNRS 91128 Palaiseau (France)
- [2] University of California Mathematics Department Evans Hall Berkeley, CA 94720 (USA)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 7, page 2095-2141
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSjöstrand, Johannes, and Zworski, Maciej. "Elementary linear algebra for advanced spectral problems." Annales de l’institut Fourier 57.7 (2007): 2095-2141. <http://eudml.org/doc/10292>.
@article{Sjöstrand2007,
abstract = {We describe a simple linear algebra idea which has been used in different branches of mathematics such as bifurcation theory, partial differential equations and numerical analysis. Under the name of the Schur complement method it is one of the standard tools of applied linear algebra. In PDE and spectral analysis it is sometimes called the Grushin problem method, and here we concentrate on its uses in the study of infinite dimensional problems, coming from partial differential operators of mathematical physics.},
affiliation = {École Polytechnique Centre de Mathématiques Laurent Schwartz UMR 7460, CNRS 91128 Palaiseau (France); University of California Mathematics Department Evans Hall Berkeley, CA 94720 (USA)},
author = {Sjöstrand, Johannes, Zworski, Maciej},
journal = {Annales de l’institut Fourier},
keywords = {Grushin problem; Schur complement; Feshbach reduction; eigenvalues; resonances; trace formulæ; feshback reduction; trace formulae; Poisson summation formula},
language = {eng},
number = {7},
pages = {2095-2141},
publisher = {Association des Annales de l’institut Fourier},
title = {Elementary linear algebra for advanced spectral problems},
url = {http://eudml.org/doc/10292},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Sjöstrand, Johannes
AU - Zworski, Maciej
TI - Elementary linear algebra for advanced spectral problems
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 7
SP - 2095
EP - 2141
AB - We describe a simple linear algebra idea which has been used in different branches of mathematics such as bifurcation theory, partial differential equations and numerical analysis. Under the name of the Schur complement method it is one of the standard tools of applied linear algebra. In PDE and spectral analysis it is sometimes called the Grushin problem method, and here we concentrate on its uses in the study of infinite dimensional problems, coming from partial differential operators of mathematical physics.
LA - eng
KW - Grushin problem; Schur complement; Feshbach reduction; eigenvalues; resonances; trace formulæ; feshback reduction; trace formulae; Poisson summation formula
UR - http://eudml.org/doc/10292
ER -
References
top- David Bau, Lloyd N. Trefethen, Numerical linear algebra, (1997), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA Zbl0874.65013MR1444820
- Louis Boutet de Monvel, Boundary problems for pseudo-differential operators, Acta Math. 126 (1971), 11-51 Zbl0206.39401MR407904
- E.B. Davies, M. Hager, Perturbations of Jordan matrices
- Jan Dereziński, Vojkan Jakšić, Spectral theory of Pauli-Fierz operators, J. Funct. Anal. 180 (2001), 243-327 Zbl1034.81016MR1814991
- Mouez Dimassi, Johannes Sjöstrand, Spectral asymptotics in the semi-classical limit, 268 (1999), Cambridge University Press, Cambridge Zbl0926.35002MR1735654
- Roger Fletcher, Tom Johnson, On the stability of null-space methods for KKT systems, SIAM J. Matrix Anal. Appl. 18 (1997), 938-958 Zbl0890.65060MR1472003
- I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, (1969), American Mathematical Society, Providence, R.I. Zbl0181.13504MR246142
- V. V. Grushin, Les problèmes aux limites dégénérés et les opérateurs pseudo-différentiels, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2 (1971), 737-743, Gauthier-Villars, Paris Zbl0244.35075MR509187
- M. Hager, J. Sjöstrand, Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators Zbl1151.35063
- B. Helffer, J. Sjöstrand, Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.) (1986) Zbl0631.35075MR871788
- B. Helffer, J. Sjöstrand, Équation de Schrödinger avec champ magnétique et équation de Harper, Schrödinger operators (Sønderborg, 1988) 345 (1989), 118-197, Springer, Berlin Zbl0699.35189MR1037319
- B. Helffer, J. Sjöstrand, Semiclassical analysis for Harper’s equation. III. Cantor structure of the spectrum, Mém. Soc. Math. France (N.S.) (1989), 1-124 Zbl0725.34099
- Lars Hörmander, The analysis of linear partial differential operators. I, II, 256, 257 (1983), Springer-Verlag, Berlin Zbl0521.35001MR717035
- Lars Hörmander, The analysis of linear partial differential operators. III, IV, 274,275 (1985), Springer-Verlag, Berlin Zbl0601.35001MR781536
- A. Iantchenko, J. Sjöstrand, M. Zworski, Birkhoff normal forms in semi-classical inverse problems, Math. Res. Lett. 9 (2002), 337-362 Zbl1258.35208MR1909649
- V. B. Lidskiĭ, Perturbation theory of non-conjugate operators, U.S.S.R. Comput. Math. and Math. Phys. 6 (1966), 73-85 Zbl0166.40501
- Anders Melin, Johannes Sjöstrand, Bohr-Sommerfeld quantization condition for non-selfadjoint operators in dimension 2, Astérisque (2003), 181-244 Zbl1061.35186MR2003421
- Julio Moro, James V. Burke, Michael L. Overton, On the Lidskii-Vishik-Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure, SIAM J. Matrix Anal. Appl. 18 (1997), 793-817 Zbl0889.15016MR1471994
- Johannes Sjöstrand, Operators of principal type with interior boundary conditions, Acta Math. 130 (1973), 1-51 Zbl0253.35076MR436226
- Johannes Sjöstrand, Pseudospectrum for differential operators, Seminaire: Équations aux Dérivées Partielles, 2002–2003 (2003), École Polytech., Palaiseau Zbl1061.35067MR2030711
- Johannes Sjöstrand, Georgi Vodev, Asymptotics of the number of Rayleigh resonances, Math. Ann. 309 (1997), 287-306 Zbl0890.35098MR1474193
- Johannes Sjöstrand, Maciej Zworski, Asymptotic distribution of resonances for convex obstacles, Acta Math. 183 (1999), 191-253 Zbl0989.35099MR1738044
- Johannes Sjöstrand, Maciej Zworski, Quantum monodromy and semi-classical trace formulae, J. Math. Pures Appl. (9) 81 (2002), 1-33 Zbl1038.58033MR1994881
- Lloyd N. Trefethen, Pseudospectra of linear operators, SIAM Rev. 39 (1997), 383-406 Zbl0896.15006MR1469941
- S. Zelditch, Survey on the inverse spectral problem Zbl1061.58029
- Maciej Zworski, Resonances in physics and geometry, Notices of the AMS 46 (1999), 319-328 Zbl1177.58021MR1668841
- Maciej Zworski, Numerical linear algebra and solvability of partial differential equations, Comm. Math. Phys. 229 (2002), 293-307 Zbl1021.35077MR1923176
Citations in EuDML Documents
top- Johannes Sjöstrand, Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations
- Johannes Sjöstrand, Weyl asymptotics for non-self-adjoint operators with small multiplicative random perturbations
- Michael Hitrik, Karel Pravda-Starov, Eigenvalues and subelliptic estimates for non-selfadjoint semiclassical operators with double characteristics
- Johannes Sjöstrand, Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations
- Stéphane Nonnenmacher, Quantum transfer operators and quantum scattering
- Johannes Sjöstrand, Spectral properties of non-self-adjoint operators
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.