Elementary linear algebra for advanced spectral problems

Johannes Sjöstrand[1]; Maciej Zworski[2]

  • [1] École Polytechnique Centre de Mathématiques Laurent Schwartz UMR 7460, CNRS 91128 Palaiseau (France)
  • [2] University of California Mathematics Department Evans Hall Berkeley, CA 94720 (USA)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 7, page 2095-2141
  • ISSN: 0373-0956

Abstract

top
We describe a simple linear algebra idea which has been used in different branches of mathematics such as bifurcation theory, partial differential equations and numerical analysis. Under the name of the Schur complement method it is one of the standard tools of applied linear algebra. In PDE and spectral analysis it is sometimes called the Grushin problem method, and here we concentrate on its uses in the study of infinite dimensional problems, coming from partial differential operators of mathematical physics.

How to cite

top

Sjöstrand, Johannes, and Zworski, Maciej. "Elementary linear algebra for advanced spectral problems." Annales de l’institut Fourier 57.7 (2007): 2095-2141. <http://eudml.org/doc/10292>.

@article{Sjöstrand2007,
abstract = {We describe a simple linear algebra idea which has been used in different branches of mathematics such as bifurcation theory, partial differential equations and numerical analysis. Under the name of the Schur complement method it is one of the standard tools of applied linear algebra. In PDE and spectral analysis it is sometimes called the Grushin problem method, and here we concentrate on its uses in the study of infinite dimensional problems, coming from partial differential operators of mathematical physics.},
affiliation = {École Polytechnique Centre de Mathématiques Laurent Schwartz UMR 7460, CNRS 91128 Palaiseau (France); University of California Mathematics Department Evans Hall Berkeley, CA 94720 (USA)},
author = {Sjöstrand, Johannes, Zworski, Maciej},
journal = {Annales de l’institut Fourier},
keywords = {Grushin problem; Schur complement; Feshbach reduction; eigenvalues; resonances; trace formulæ; feshback reduction; trace formulae; Poisson summation formula},
language = {eng},
number = {7},
pages = {2095-2141},
publisher = {Association des Annales de l’institut Fourier},
title = {Elementary linear algebra for advanced spectral problems},
url = {http://eudml.org/doc/10292},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Sjöstrand, Johannes
AU - Zworski, Maciej
TI - Elementary linear algebra for advanced spectral problems
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 7
SP - 2095
EP - 2141
AB - We describe a simple linear algebra idea which has been used in different branches of mathematics such as bifurcation theory, partial differential equations and numerical analysis. Under the name of the Schur complement method it is one of the standard tools of applied linear algebra. In PDE and spectral analysis it is sometimes called the Grushin problem method, and here we concentrate on its uses in the study of infinite dimensional problems, coming from partial differential operators of mathematical physics.
LA - eng
KW - Grushin problem; Schur complement; Feshbach reduction; eigenvalues; resonances; trace formulæ; feshback reduction; trace formulae; Poisson summation formula
UR - http://eudml.org/doc/10292
ER -

References

top
  1. David Bau, Lloyd N. Trefethen, Numerical linear algebra, (1997), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA Zbl0874.65013MR1444820
  2. Louis Boutet de Monvel, Boundary problems for pseudo-differential operators, Acta Math. 126 (1971), 11-51 Zbl0206.39401MR407904
  3. E.B. Davies, M. Hager, Perturbations of Jordan matrices 
  4. Jan Dereziński, Vojkan Jakšić, Spectral theory of Pauli-Fierz operators, J. Funct. Anal. 180 (2001), 243-327 Zbl1034.81016MR1814991
  5. Mouez Dimassi, Johannes Sjöstrand, Spectral asymptotics in the semi-classical limit, 268 (1999), Cambridge University Press, Cambridge Zbl0926.35002MR1735654
  6. Roger Fletcher, Tom Johnson, On the stability of null-space methods for KKT systems, SIAM J. Matrix Anal. Appl. 18 (1997), 938-958 Zbl0890.65060MR1472003
  7. I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, (1969), American Mathematical Society, Providence, R.I. Zbl0181.13504MR246142
  8. V. V. Grushin, Les problèmes aux limites dégénérés et les opérateurs pseudo-différentiels, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2 (1971), 737-743, Gauthier-Villars, Paris Zbl0244.35075MR509187
  9. M. Hager, J. Sjöstrand, Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators Zbl1151.35063
  10. B. Helffer, J. Sjöstrand, Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.) (1986) Zbl0631.35075MR871788
  11. B. Helffer, J. Sjöstrand, Équation de Schrödinger avec champ magnétique et équation de Harper, Schrödinger operators (Sønderborg, 1988) 345 (1989), 118-197, Springer, Berlin Zbl0699.35189MR1037319
  12. B. Helffer, J. Sjöstrand, Semiclassical analysis for Harper’s equation. III. Cantor structure of the spectrum, Mém. Soc. Math. France (N.S.) (1989), 1-124 Zbl0725.34099
  13. Lars Hörmander, The analysis of linear partial differential operators. I, II, 256, 257 (1983), Springer-Verlag, Berlin Zbl0521.35001MR717035
  14. Lars Hörmander, The analysis of linear partial differential operators. III, IV, 274,275 (1985), Springer-Verlag, Berlin Zbl0601.35001MR781536
  15. A. Iantchenko, J. Sjöstrand, M. Zworski, Birkhoff normal forms in semi-classical inverse problems, Math. Res. Lett. 9 (2002), 337-362 Zbl1258.35208MR1909649
  16. V. B. Lidskiĭ, Perturbation theory of non-conjugate operators, U.S.S.R. Comput. Math. and Math. Phys. 6 (1966), 73-85 Zbl0166.40501
  17. Anders Melin, Johannes Sjöstrand, Bohr-Sommerfeld quantization condition for non-selfadjoint operators in dimension 2, Astérisque (2003), 181-244 Zbl1061.35186MR2003421
  18. Julio Moro, James V. Burke, Michael L. Overton, On the Lidskii-Vishik-Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure, SIAM J. Matrix Anal. Appl. 18 (1997), 793-817 Zbl0889.15016MR1471994
  19. Johannes Sjöstrand, Operators of principal type with interior boundary conditions, Acta Math. 130 (1973), 1-51 Zbl0253.35076MR436226
  20. Johannes Sjöstrand, Pseudospectrum for differential operators, Seminaire: Équations aux Dérivées Partielles, 2002–2003 (2003), École Polytech., Palaiseau Zbl1061.35067MR2030711
  21. Johannes Sjöstrand, Georgi Vodev, Asymptotics of the number of Rayleigh resonances, Math. Ann. 309 (1997), 287-306 Zbl0890.35098MR1474193
  22. Johannes Sjöstrand, Maciej Zworski, Asymptotic distribution of resonances for convex obstacles, Acta Math. 183 (1999), 191-253 Zbl0989.35099MR1738044
  23. Johannes Sjöstrand, Maciej Zworski, Quantum monodromy and semi-classical trace formulae, J. Math. Pures Appl. (9) 81 (2002), 1-33 Zbl1038.58033MR1994881
  24. Lloyd N. Trefethen, Pseudospectra of linear operators, SIAM Rev. 39 (1997), 383-406 Zbl0896.15006MR1469941
  25. S. Zelditch, Survey on the inverse spectral problem Zbl1061.58029
  26. Maciej Zworski, Resonances in physics and geometry, Notices of the AMS 46 (1999), 319-328 Zbl1177.58021MR1668841
  27. Maciej Zworski, Numerical linear algebra and solvability of partial differential equations, Comm. Math. Phys. 229 (2002), 293-307 Zbl1021.35077MR1923176

Citations in EuDML Documents

top
  1. Johannes Sjöstrand, Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations
  2. Johannes Sjöstrand, Weyl asymptotics for non-self-adjoint operators with small multiplicative random perturbations
  3. Michael Hitrik, Karel Pravda-Starov, Eigenvalues and subelliptic estimates for non-selfadjoint semiclassical operators with double characteristics
  4. Johannes Sjöstrand, Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations
  5. Stéphane Nonnenmacher, Quantum transfer operators and quantum scattering
  6. Johannes Sjöstrand, Spectral properties of non-self-adjoint operators

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.