Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping

Abderrahmane Zaraï; Nasser-eddine Tatar

Archivum Mathematicum (2010)

  • Volume: 046, Issue: 3, page 157-176
  • ISSN: 0044-8753

Abstract

top
A viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping is considered. Using integral inequalities and multiplier techniques we establish polynomial decay estimates for the energy of the problem. The results obtained in this paper extend previous results by Tatar and Zaraï [25].

How to cite

top

Zaraï, Abderrahmane, and Tatar, Nasser-eddine. "Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping." Archivum Mathematicum 046.3 (2010): 157-176. <http://eudml.org/doc/116480>.

@article{Zaraï2010,
abstract = {A viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping is considered. Using integral inequalities and multiplier techniques we establish polynomial decay estimates for the energy of the problem. The results obtained in this paper extend previous results by Tatar and Zaraï [25].},
author = {Zaraï, Abderrahmane, Tatar, Nasser-eddine},
journal = {Archivum Mathematicum},
keywords = {Balakrishnan-Taylor damping; polynomial decay; memory term; viscoelasticity; Balakrishnan-Taylor damping; polynomial decay; memory term; viscoelasticity},
language = {eng},
number = {3},
pages = {157-176},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping},
url = {http://eudml.org/doc/116480},
volume = {046},
year = {2010},
}

TY - JOUR
AU - Zaraï, Abderrahmane
AU - Tatar, Nasser-eddine
TI - Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 3
SP - 157
EP - 176
AB - A viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping is considered. Using integral inequalities and multiplier techniques we establish polynomial decay estimates for the energy of the problem. The results obtained in this paper extend previous results by Tatar and Zaraï [25].
LA - eng
KW - Balakrishnan-Taylor damping; polynomial decay; memory term; viscoelasticity; Balakrishnan-Taylor damping; polynomial decay; memory term; viscoelasticity
UR - http://eudml.org/doc/116480
ER -

References

top
  1. Alabau-Boussouira, F., Cannarsa, P., Sforza, D., 10.1016/j.jfa.2007.09.012, J. Funct. Anal. 254 (5) (2008), 1342–1372. (2008) Zbl1145.35025MR2386941DOI10.1016/j.jfa.2007.09.012
  2. Appleby, J. A. D., Fabrizio, M., Lazzari, B., Reynolds, D. W., 10.1142/S0218202506001674, Math. Models Methods Appl. Sci. 16 (2006), 1677–1694. (2006) Zbl1114.45003MR2264556DOI10.1142/S0218202506001674
  3. Balakrishnan, A. V., Taylor, L. W., Distributed parameter nonlinear damping models for flight structures, Damping 89', Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989. (1989) 
  4. Ball, J., 10.1093/qmath/28.4.473, Quart. J. Math. Oxford 28 (1977), 473–486. (1977) Zbl0377.35037MR0473484DOI10.1093/qmath/28.4.473
  5. Bass, R. W., Zes, D., Spillover, nonlinearity and flexible structures, The Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, NASA Conference Publication 10065 (L.W.Taylor, ed.), 1991, pp. 1–14. (1991) 
  6. Berrimi, S., Messaoudi, S., Existence and decay of solutions of a viscoelastic equation with a nonlinear source, Nonlinear Anal. 64 (2006), 2314–2331. (2006) Zbl1094.35070MR2213903
  7. Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Filho, J. S. Prates, Soriano, J. A., Existence and uniform decay rates for viscoelastic problems with nonlocal boundary damping, Differential Integral Equations 14 (1) (2001), 85–116. (2001) MR1797934
  8. Cavalcanti, M. M., Oquendo, H. P., 10.1137/S0363012902408010, SIAM J. Control Optim. (electronic) 42 (4) (2003), 1310–1324. (2003) Zbl1053.35101MR2044797DOI10.1137/S0363012902408010
  9. Clark, H. R., Elastic membrane equation in bounded and unbounded domains, Electron. J. Qual. Theory Differ. Equ. 11 (2002), 1–21. (2002) Zbl1032.35039MR1918508
  10. Glassey, R. T., 10.1007/BF01213863, Math. Z. 132 (1973), 183–203. (1973) Zbl0247.35083MR0340799DOI10.1007/BF01213863
  11. Haraux, A., Zuazua, E., 10.1007/BF00282203, Arch. Rational Mech. Anal. 100 (1988), 191–206. (1988) Zbl0654.35070MR0913963DOI10.1007/BF00282203
  12. Kalantarov, V. K., Ladyzhenskaya, O. A., 10.1007/BF01109723, J. Soviet Math. 10 (1978), 53–70. (1978) DOI10.1007/BF01109723
  13. Kirchhoff, G., Vorlesungen über Mechanik, Tauber, Leipzig, 1883. (1883) 
  14. Komornik, V., Exact controllability and stabilization. The multiplier method, RAM: Research in Applied Mathematics, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. (1994) Zbl0937.93003MR1359765
  15. Kopackova, M., Remarks on bounded solutions of a semilinear dissipative hyperbolic equation, Comment. Math. Univ. Carolin. 30 (1989), 713–719. (1989) Zbl0707.35026MR1045899
  16. Li, M. R., Tsai, L. Y., Existence and nonexistence of global solutions of some systems of semilinear wave equations, Nonlinear Anal. 54 (2003), 1397–1415. (2003) MR1997226
  17. Matsuyama, T., Ikehata, R., 10.1006/jmaa.1996.0464, J. Math. Anal. Appl. 204 (3) (1996), 729–753. (1996) MR1422769DOI10.1006/jmaa.1996.0464
  18. Medjden, M., e. Tatar, N., On the wave equation with a temporal nonlocal term, Dynam. Systems Appl. 16 (2007), 665–672. (2007) MR2370149
  19. Nakao, M., 10.1016/0022-247X(77)90040-3, J. Math. Anal. Appl. 60 (1977), 542–549. (1977) MR0499564DOI10.1016/0022-247X(77)90040-3
  20. Nishihara, K., Yamada, Y., On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms, Funkcial. Ekvac. 33 (1990), 151–159. (1990) Zbl0715.35053MR1065473
  21. Ono, K., 10.1006/jdeq.1997.3263, J. Differential Equations 137 (2) (1997), 273–301. (1997) Zbl0879.35110MR1456598DOI10.1006/jdeq.1997.3263
  22. Ono, K., 10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.0.CO;2-0, Math. Methods Appl. Sci. 20 (1997), 151–177. (1997) Zbl0878.35081MR1430038DOI10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.0.CO;2-0
  23. Ono, K., 10.1006/jmaa.1997.5697, J. Math. Anal. Appl. 216 (1997), 321–342. (1997) Zbl0893.35078MR1487267DOI10.1006/jmaa.1997.5697
  24. Pata, V., Exponential stability in linear viscoelasticity, Quart. Appl. Math. 64 (3) (2006), 499–513. (2006) Zbl1117.35052MR2259051
  25. Tatar, N-e. and Zaraï, A.,, Exponential stability and blow up for a problem with Balakrishnan-Taylor damping, to appear in Demonstratio Math. 
  26. Tatar, N-e. and Zaraï, A.,, On a Kirchhoff equation with Balakrishnan-Taylor damping and source term, to apper in DCDIS. 
  27. You, Y., 10.1155/S1085337596000048, Abstr. Appl. Anal. 1 (1) (1996), 83–102. (1996) Zbl0940.35036MR1390561DOI10.1155/S1085337596000048

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.