On a system of nonlinear wave equations with the Kirchhoff-Carrier and Balakrishnan-Taylor terms
Bui Duc Nam; Nguyen Huu Nhan; Le Thi Phuong Ngoc; Nguyen Thanh Long
Mathematica Bohemica (2022)
- Volume: 147, Issue: 2, page 237-270
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topNam, Bui Duc, et al. "On a system of nonlinear wave equations with the Kirchhoff-Carrier and Balakrishnan-Taylor terms." Mathematica Bohemica 147.2 (2022): 237-270. <http://eudml.org/doc/298034>.
@article{Nam2022,
abstract = {We study a system of nonlinear wave equations of the Kirchhoff-Carrier type containing a variant of the Balakrishnan-Taylor damping in nonlinear terms. By the linearization method together with the Faedo-Galerkin method, we prove the local existence and uniqueness of a weak solution. On the other hand, by constructing a suitable Lyapunov functional, a sufficient condition is also established to obtain the exponential decay of weak solutions.},
author = {Nam, Bui Duc, Nhan, Nguyen Huu, Ngoc, Le Thi Phuong, Long, Nguyen Thanh},
journal = {Mathematica Bohemica},
keywords = {system of nonlinear wave equations of Kirchhoff-Carrier type; Balakrishnan-Taylor term; Faedo-Galerkin method; local existence; exponential decay},
language = {eng},
number = {2},
pages = {237-270},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a system of nonlinear wave equations with the Kirchhoff-Carrier and Balakrishnan-Taylor terms},
url = {http://eudml.org/doc/298034},
volume = {147},
year = {2022},
}
TY - JOUR
AU - Nam, Bui Duc
AU - Nhan, Nguyen Huu
AU - Ngoc, Le Thi Phuong
AU - Long, Nguyen Thanh
TI - On a system of nonlinear wave equations with the Kirchhoff-Carrier and Balakrishnan-Taylor terms
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 2
SP - 237
EP - 270
AB - We study a system of nonlinear wave equations of the Kirchhoff-Carrier type containing a variant of the Balakrishnan-Taylor damping in nonlinear terms. By the linearization method together with the Faedo-Galerkin method, we prove the local existence and uniqueness of a weak solution. On the other hand, by constructing a suitable Lyapunov functional, a sufficient condition is also established to obtain the exponential decay of weak solutions.
LA - eng
KW - system of nonlinear wave equations of Kirchhoff-Carrier type; Balakrishnan-Taylor term; Faedo-Galerkin method; local existence; exponential decay
UR - http://eudml.org/doc/298034
ER -
References
top- Balakrishnan, A. V., Taylor, L. W., Distributed parameter nonlinear damping models for flight structures, Proceedings Damping 89. Report Number: WRDC-TR-89-3116 Volume II p. FDC-1 Flight Dynamics Laboratory, Chicago (1989), 9 pages.
- Bass, R. W., Zes, D., Spillover, nonlinearity and flexible structures, 4th NASA Workshop on Computational Control of Flexible Aerospace Systems NASA Conference Publication 10065. NASA. Langley Research Center, Hampton (1991), 1-14. (1991)
- Boulaaras, S., 10.1016/j.aej.2019.12.013, Alexandria Eng. J. 59 (2020), 1059-1071. (2020) DOI10.1016/j.aej.2019.12.013
- Boulaaras, S., Draifia, A., Zennir, K., 10.1002/mma.5693, Math. Methods Appl. Sci. 42 (2019), 4795-4814. (2019) Zbl1428.35037MR3992940DOI10.1002/mma.5693
- Boulaaras, S., Ouchenane, D., 10.1002/mma.5998, Math. Methods Appl. Sci. 43 (2020), 1717-1735. (2020) Zbl1445.35054MR4067018DOI10.1002/mma.5998
- Boumaza, N., Boulaaras, S., 10.1002/mma.5117, Math. Methods Appl. Sci. 41 (2018), 6050-6069. (2018) Zbl1415.35038MR3879228DOI10.1002/mma.5117
- Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Filho, J. S. Prates, Soriano, J. A., 10.1006/jmaa.1998.6057, J. Math. Anal. Appl. 226 (1998), 40-60. (1998) Zbl0914.35081MR1646453DOI10.1006/jmaa.1998.6057
- Emmrich, E., Thalhammer, M., 10.1088/0951-7715/24/9/008, Nonlinearity 24 (2011), 2523-2546. (2011) Zbl1222.74021MR2819935DOI10.1088/0951-7715/24/9/008
- Feng, B., Kang, Y. H., 10.12775/tmna.2019.047, Topol. Methods Nonlinear Anal. 54 (2019), 321-343. (2019) Zbl1437.35071MR4018283DOI10.12775/tmna.2019.047
- Freitas, M. M., 10.1002/mma.5921, Math. Methods Appl. Sci. 43 (2020), 658-681. (2020) Zbl1445.35078MR4056455DOI10.1002/mma.5921
- Freitas, M. M., Santos, M. L., Langa, J. A., 10.1016/j.jde.2017.11.006, J. Differ. Equations 264 (2018), 2970-3051. (2018) Zbl1394.35043MR3737860DOI10.1016/j.jde.2017.11.006
- Tavares, E. H. Gomes, Silva, M. A. Jorge, Narciso, V., 10.1007/s10884-019-09766-x, J. Dyn. Differ. Equations 32 (2020), 1157-1175. (2020) Zbl1445.35060MR4126844DOI10.1007/s10884-019-09766-x
- Ha, T. G., 10.1007/s00033-016-0625-3, Z. Angew. Math. Phys. 67 (2016), Article ID 32, 17 pages. (2016) Zbl1353.35064MR3483881DOI10.1007/s00033-016-0625-3
- Ha, T. G., 10.11650/tjm/7828, Taiwanese J. Math. 21 (2017), 807-817. (2017) Zbl1394.35044MR3684388DOI10.11650/tjm/7828
- Ha, T. G., 10.3934/eect.2018014, Evol. Equ. Control Theory 7 (2018), 281-291. (2018) Zbl1415.35042MR3810197DOI10.3934/eect.2018014
- Hao, J., Hou, Y., 10.1016/j.camwa.2018.08.023, Comput. Math. Appl. 76 (2018), 2235-2245. (2018) Zbl1442.35267MR3864576DOI10.1016/j.camwa.2018.08.023
- Hao, J., Wang, F., 10.1016/j.camwa.2019.04.010, Comput. Math. Appl. 78 (2019), 2632-2640. (2019) Zbl1443.35095MR4001729DOI10.1016/j.camwa.2019.04.010
- Shah, S. Hyder Ali Muttaqi, 10.1007/s11012-009-9233-z, Meccanica 45 (2010), 143-151. (2010) Zbl1258.76026MR2608341DOI10.1007/s11012-009-9233-z
- Jamil, M., Fetecau, C., 10.1016/j.nonrwa.2010.05.016, Nonlinear Anal., Real World Appl. 11 (2010), 4302-4311. (2010) Zbl1201.35159MR2683877DOI10.1016/j.nonrwa.2010.05.016
- Kang, J.-R., Lee, M. J., Park, S. H., 10.1016/j.camwa.2017.06.033, Comput. Math. Appl. 74 (2017), 1506-1515. (2017) Zbl1394.35280MR3693349DOI10.1016/j.camwa.2017.06.033
- Lee, M. J., Kim, D., Park, J. Y., 10.1186/s13661-016-0679-3, Bound. Value Probl. 2016 (2016), Article ID 173, 21 pages. (2016) Zbl1350.35129MR3550421DOI10.1186/s13661-016-0679-3
- Lee, M. J., Park, J. Y., Kang, Y. H., 10.1016/j.camwa.2015.05.004, Comput. Math. Appl. 70 (2015), 478-487. (2015) Zbl1443.35098MR3372039DOI10.1016/j.camwa.2015.05.004
- Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Etudes mathematiques. Dunod, Gauthier-Villars, Paris (1969), French. (1969) Zbl0189.40603MR0259693
- Long, N. T., Ha, H. H., Ngoc, L. T. P., Triet, N. A., 10.3934/cpaa.2020023, Commun. Pure Appl. Anal. 19 (2020), 455-492. (2020) Zbl1437.35468MR4025953DOI10.3934/cpaa.2020023
- Medeiros, L. A., On some nonlinear perturbation of Kirchhoff-Carrier operator, Comput. Appl. Math. 13 (1994), 225-233. (1994) Zbl0821.35100MR1326759
- Mu, C., Ma, J., 10.1007/s00033-013-0324-2, Z. Angew. Math. Phys. 65 (2014), 91-113. (2014) Zbl1295.35309MR3160626DOI10.1007/s00033-013-0324-2
- Ngoc, L. T. P., Nhan, N. H., Nam, B. D., Long, N. T., 10.1007/s10986-020-09469-7, Lith. Math. J. 60 (2020), 225-247. (2020) Zbl1442.35243MR4110669DOI10.1007/s10986-020-09469-7
- Qi, H., Jin, H., 10.1016/j.nonrwa.2008.07.008, Nonlinear Anal., Real World Appl. 10 (2009), 2700-2708. (2009) Zbl1162.76006MR2523233DOI10.1016/j.nonrwa.2008.07.008
- Santos, M. L., Júnior, D. S. Almeida, 10.1007/s00033-016-0622-6, Z. Angew. Math. Phys. 67 (2016), Article ID 63, 18 pages. (2016) Zbl1351.35217MR3494484DOI10.1007/s00033-016-0622-6
- Showalter, R. E., Hilbert space methods for partial differential equations, Electronic Journal of Differential Equations. Monograph 1. Southwest Texas State University, San Marcos (1994). (1994) Zbl0991.35001MR1302484
- Tatar, N.-e., Zaraï, A., 10.1515/dema-2013-0297, Demonstr. Math. 44 (2011), 67-90. (2011) Zbl1227.35074MR2796763DOI10.1515/dema-2013-0297
- Tatar, N.-e., Zaraï, A., On a Kirchhoff equation with Balakrishnan-Taylor damping and source term, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 18 (2011), 615-627. (2011) Zbl1264.35244MR2884753
- Tong, D., Zhang, X., Zhang, X., 10.1016/j.nonrwa.2008.07.008, J. Non-Newton. Fluid Mech. 156 (2009), 75-83. (2009) Zbl1274.76136MR2523233DOI10.1016/j.nonrwa.2008.07.008
- Triet, N. A., Ngoc, L. T. P., Long, N. T., 10.1016/j.nonrwa.2009.11.028, Nonlinear Anal., Real World Appl. 11 (2010), 3363-3388. (2010) Zbl1207.35208MR2683795DOI10.1016/j.nonrwa.2009.11.028
- Zaraï, A., Tatar, N.-e., Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping, Arch. Math., Brno 46 (2010), 157-176. (2010) Zbl1240.35330MR2735903
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.