On a system of nonlinear wave equations with the Kirchhoff-Carrier and Balakrishnan-Taylor terms

Bui Duc Nam; Nguyen Huu Nhan; Le Thi Phuong Ngoc; Nguyen Thanh Long

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 2, page 237-270
  • ISSN: 0862-7959

Abstract

top
We study a system of nonlinear wave equations of the Kirchhoff-Carrier type containing a variant of the Balakrishnan-Taylor damping in nonlinear terms. By the linearization method together with the Faedo-Galerkin method, we prove the local existence and uniqueness of a weak solution. On the other hand, by constructing a suitable Lyapunov functional, a sufficient condition is also established to obtain the exponential decay of weak solutions.

How to cite

top

Nam, Bui Duc, et al. "On a system of nonlinear wave equations with the Kirchhoff-Carrier and Balakrishnan-Taylor terms." Mathematica Bohemica 147.2 (2022): 237-270. <http://eudml.org/doc/298034>.

@article{Nam2022,
abstract = {We study a system of nonlinear wave equations of the Kirchhoff-Carrier type containing a variant of the Balakrishnan-Taylor damping in nonlinear terms. By the linearization method together with the Faedo-Galerkin method, we prove the local existence and uniqueness of a weak solution. On the other hand, by constructing a suitable Lyapunov functional, a sufficient condition is also established to obtain the exponential decay of weak solutions.},
author = {Nam, Bui Duc, Nhan, Nguyen Huu, Ngoc, Le Thi Phuong, Long, Nguyen Thanh},
journal = {Mathematica Bohemica},
keywords = {system of nonlinear wave equations of Kirchhoff-Carrier type; Balakrishnan-Taylor term; Faedo-Galerkin method; local existence; exponential decay},
language = {eng},
number = {2},
pages = {237-270},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a system of nonlinear wave equations with the Kirchhoff-Carrier and Balakrishnan-Taylor terms},
url = {http://eudml.org/doc/298034},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Nam, Bui Duc
AU - Nhan, Nguyen Huu
AU - Ngoc, Le Thi Phuong
AU - Long, Nguyen Thanh
TI - On a system of nonlinear wave equations with the Kirchhoff-Carrier and Balakrishnan-Taylor terms
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 2
SP - 237
EP - 270
AB - We study a system of nonlinear wave equations of the Kirchhoff-Carrier type containing a variant of the Balakrishnan-Taylor damping in nonlinear terms. By the linearization method together with the Faedo-Galerkin method, we prove the local existence and uniqueness of a weak solution. On the other hand, by constructing a suitable Lyapunov functional, a sufficient condition is also established to obtain the exponential decay of weak solutions.
LA - eng
KW - system of nonlinear wave equations of Kirchhoff-Carrier type; Balakrishnan-Taylor term; Faedo-Galerkin method; local existence; exponential decay
UR - http://eudml.org/doc/298034
ER -

References

top
  1. Balakrishnan, A. V., Taylor, L. W., Distributed parameter nonlinear damping models for flight structures, Proceedings Damping 89. Report Number: WRDC-TR-89-3116 Volume II p. FDC-1 Flight Dynamics Laboratory, Chicago (1989), 9 pages. 
  2. Bass, R. W., Zes, D., Spillover, nonlinearity and flexible structures, 4th NASA Workshop on Computational Control of Flexible Aerospace Systems NASA Conference Publication 10065. NASA. Langley Research Center, Hampton (1991), 1-14. (1991) 
  3. Boulaaras, S., 10.1016/j.aej.2019.12.013, Alexandria Eng. J. 59 (2020), 1059-1071. (2020) DOI10.1016/j.aej.2019.12.013
  4. Boulaaras, S., Draifia, A., Zennir, K., 10.1002/mma.5693, Math. Methods Appl. Sci. 42 (2019), 4795-4814. (2019) Zbl1428.35037MR3992940DOI10.1002/mma.5693
  5. Boulaaras, S., Ouchenane, D., 10.1002/mma.5998, Math. Methods Appl. Sci. 43 (2020), 1717-1735. (2020) Zbl1445.35054MR4067018DOI10.1002/mma.5998
  6. Boumaza, N., Boulaaras, S., 10.1002/mma.5117, Math. Methods Appl. Sci. 41 (2018), 6050-6069. (2018) Zbl1415.35038MR3879228DOI10.1002/mma.5117
  7. Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Filho, J. S. Prates, Soriano, J. A., 10.1006/jmaa.1998.6057, J. Math. Anal. Appl. 226 (1998), 40-60. (1998) Zbl0914.35081MR1646453DOI10.1006/jmaa.1998.6057
  8. Emmrich, E., Thalhammer, M., 10.1088/0951-7715/24/9/008, Nonlinearity 24 (2011), 2523-2546. (2011) Zbl1222.74021MR2819935DOI10.1088/0951-7715/24/9/008
  9. Feng, B., Kang, Y. H., 10.12775/tmna.2019.047, Topol. Methods Nonlinear Anal. 54 (2019), 321-343. (2019) Zbl1437.35071MR4018283DOI10.12775/tmna.2019.047
  10. Freitas, M. M., 10.1002/mma.5921, Math. Methods Appl. Sci. 43 (2020), 658-681. (2020) Zbl1445.35078MR4056455DOI10.1002/mma.5921
  11. Freitas, M. M., Santos, M. L., Langa, J. A., 10.1016/j.jde.2017.11.006, J. Differ. Equations 264 (2018), 2970-3051. (2018) Zbl1394.35043MR3737860DOI10.1016/j.jde.2017.11.006
  12. Tavares, E. H. Gomes, Silva, M. A. Jorge, Narciso, V., 10.1007/s10884-019-09766-x, J. Dyn. Differ. Equations 32 (2020), 1157-1175. (2020) Zbl1445.35060MR4126844DOI10.1007/s10884-019-09766-x
  13. Ha, T. G., 10.1007/s00033-016-0625-3, Z. Angew. Math. Phys. 67 (2016), Article ID 32, 17 pages. (2016) Zbl1353.35064MR3483881DOI10.1007/s00033-016-0625-3
  14. Ha, T. G., 10.11650/tjm/7828, Taiwanese J. Math. 21 (2017), 807-817. (2017) Zbl1394.35044MR3684388DOI10.11650/tjm/7828
  15. Ha, T. G., 10.3934/eect.2018014, Evol. Equ. Control Theory 7 (2018), 281-291. (2018) Zbl1415.35042MR3810197DOI10.3934/eect.2018014
  16. Hao, J., Hou, Y., 10.1016/j.camwa.2018.08.023, Comput. Math. Appl. 76 (2018), 2235-2245. (2018) Zbl1442.35267MR3864576DOI10.1016/j.camwa.2018.08.023
  17. Hao, J., Wang, F., 10.1016/j.camwa.2019.04.010, Comput. Math. Appl. 78 (2019), 2632-2640. (2019) Zbl1443.35095MR4001729DOI10.1016/j.camwa.2019.04.010
  18. Shah, S. Hyder Ali Muttaqi, 10.1007/s11012-009-9233-z, Meccanica 45 (2010), 143-151. (2010) Zbl1258.76026MR2608341DOI10.1007/s11012-009-9233-z
  19. Jamil, M., Fetecau, C., 10.1016/j.nonrwa.2010.05.016, Nonlinear Anal., Real World Appl. 11 (2010), 4302-4311. (2010) Zbl1201.35159MR2683877DOI10.1016/j.nonrwa.2010.05.016
  20. Kang, J.-R., Lee, M. J., Park, S. H., 10.1016/j.camwa.2017.06.033, Comput. Math. Appl. 74 (2017), 1506-1515. (2017) Zbl1394.35280MR3693349DOI10.1016/j.camwa.2017.06.033
  21. Lee, M. J., Kim, D., Park, J. Y., 10.1186/s13661-016-0679-3, Bound. Value Probl. 2016 (2016), Article ID 173, 21 pages. (2016) Zbl1350.35129MR3550421DOI10.1186/s13661-016-0679-3
  22. Lee, M. J., Park, J. Y., Kang, Y. H., 10.1016/j.camwa.2015.05.004, Comput. Math. Appl. 70 (2015), 478-487. (2015) Zbl1443.35098MR3372039DOI10.1016/j.camwa.2015.05.004
  23. Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Etudes mathematiques. Dunod, Gauthier-Villars, Paris (1969), French. (1969) Zbl0189.40603MR0259693
  24. Long, N. T., Ha, H. H., Ngoc, L. T. P., Triet, N. A., 10.3934/cpaa.2020023, Commun. Pure Appl. Anal. 19 (2020), 455-492. (2020) Zbl1437.35468MR4025953DOI10.3934/cpaa.2020023
  25. Medeiros, L. A., On some nonlinear perturbation of Kirchhoff-Carrier operator, Comput. Appl. Math. 13 (1994), 225-233. (1994) Zbl0821.35100MR1326759
  26. Mu, C., Ma, J., 10.1007/s00033-013-0324-2, Z. Angew. Math. Phys. 65 (2014), 91-113. (2014) Zbl1295.35309MR3160626DOI10.1007/s00033-013-0324-2
  27. Ngoc, L. T. P., Nhan, N. H., Nam, B. D., Long, N. T., 10.1007/s10986-020-09469-7, Lith. Math. J. 60 (2020), 225-247. (2020) Zbl1442.35243MR4110669DOI10.1007/s10986-020-09469-7
  28. Qi, H., Jin, H., 10.1016/j.nonrwa.2008.07.008, Nonlinear Anal., Real World Appl. 10 (2009), 2700-2708. (2009) Zbl1162.76006MR2523233DOI10.1016/j.nonrwa.2008.07.008
  29. Santos, M. L., Júnior, D. S. Almeida, 10.1007/s00033-016-0622-6, Z. Angew. Math. Phys. 67 (2016), Article ID 63, 18 pages. (2016) Zbl1351.35217MR3494484DOI10.1007/s00033-016-0622-6
  30. Showalter, R. E., Hilbert space methods for partial differential equations, Electronic Journal of Differential Equations. Monograph 1. Southwest Texas State University, San Marcos (1994). (1994) Zbl0991.35001MR1302484
  31. Tatar, N.-e., Zaraï, A., 10.1515/dema-2013-0297, Demonstr. Math. 44 (2011), 67-90. (2011) Zbl1227.35074MR2796763DOI10.1515/dema-2013-0297
  32. Tatar, N.-e., Zaraï, A., On a Kirchhoff equation with Balakrishnan-Taylor damping and source term, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 18 (2011), 615-627. (2011) Zbl1264.35244MR2884753
  33. Tong, D., Zhang, X., Zhang, X., 10.1016/j.nonrwa.2008.07.008, J. Non-Newton. Fluid Mech. 156 (2009), 75-83. (2009) Zbl1274.76136MR2523233DOI10.1016/j.nonrwa.2008.07.008
  34. Triet, N. A., Ngoc, L. T. P., Long, N. T., 10.1016/j.nonrwa.2009.11.028, Nonlinear Anal., Real World Appl. 11 (2010), 3363-3388. (2010) Zbl1207.35208MR2683795DOI10.1016/j.nonrwa.2009.11.028
  35. Zaraï, A., Tatar, N.-e., Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping, Arch. Math., Brno 46 (2010), 157-176. (2010) Zbl1240.35330MR2735903

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.