The generalized FGM distribution and its application to stereology of extremes
Applications of Mathematics (2010)
- Volume: 55, Issue: 6, page 495-512
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHlubinka, Daniel, and Kotz, Samuel. "The generalized FGM distribution and its application to stereology of extremes." Applications of Mathematics 55.6 (2010): 495-512. <http://eudml.org/doc/116487>.
@article{Hlubinka2010,
abstract = {The generalized FGM distribution and related copulas are used as bivariate models for the distribution of spheroidal characteristics. It is shown that this model is suitable for the study of extremes of the 3D spheroidal particles observed in terms of their random planar sections.},
author = {Hlubinka, Daniel, Kotz, Samuel},
journal = {Applications of Mathematics},
keywords = {generalized FGM distribution; extremes; stereology; maximum domain of attraction; extremes; stereology; maximum domain of attraction},
language = {eng},
number = {6},
pages = {495-512},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The generalized FGM distribution and its application to stereology of extremes},
url = {http://eudml.org/doc/116487},
volume = {55},
year = {2010},
}
TY - JOUR
AU - Hlubinka, Daniel
AU - Kotz, Samuel
TI - The generalized FGM distribution and its application to stereology of extremes
JO - Applications of Mathematics
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 6
SP - 495
EP - 512
AB - The generalized FGM distribution and related copulas are used as bivariate models for the distribution of spheroidal characteristics. It is shown that this model is suitable for the study of extremes of the 3D spheroidal particles observed in terms of their random planar sections.
LA - eng
KW - generalized FGM distribution; extremes; stereology; maximum domain of attraction; extremes; stereology; maximum domain of attraction
UR - http://eudml.org/doc/116487
ER -
References
top- Bairamov, I., Kotz, S., 10.1007/s001840100158, Metrika 56 (2002), 55-72. (2002) MR1922211DOI10.1007/s001840100158
- Bairamov, I., Kotz, S., Bekçi, M., 10.1080/02664760120047861, J. Appl. Stat. 28 (2001), 521-536. (2001) MR1836732DOI10.1080/02664760120047861
- Bairamov, I., Kotz, S., Gebizlioglu, O. L., The Sarmanov family and its generalization, S. Afr. Stat. J. 35 (2001), 205-224. (2001) Zbl1009.62011MR1910896
- Beneš, V., Bodlák, K., Hlubinka, D., 10.1023/A:1026283103180, Methodol. Comput. Appl. Probab. 5 (2003), 289-308. (2003) Zbl1041.62039MR2016768DOI10.1023/A:1026283103180
- Beneš, V., Jiruše, M., Slámová, M., 10.1016/S1359-6454(96)00249-2, Acta Materialia 45 (1997), 1105-1197. (1997) DOI10.1016/S1359-6454(96)00249-2
- Coles, S., An Introduction to Statistical Modeling of Extreme Values, Springer London (2001). (2001) Zbl0980.62043MR1932132
- Cruz-Orive, L. M., 10.1111/j.1365-2818.1976.tb02446.x, J. Microscopy 107 (1976), 235-253. (1976) DOI10.1111/j.1365-2818.1976.tb02446.x
- Dress, H., Reiss, R.-D., Tail behavior in Wicksell's corpuscle problem, In: Probability Theory and Applications J. Galambos, J. Kátai Kluwer Dordrecht (1992), 205-220. (1992) Zbl0767.60008MR1211909
- Embrechts, P., Klüppelberg, C., Mikosch, T., Modelling Extremal Events for Insurance and Finance. Applications of Mathematics. 33, Springer Berlin (1997). (1997) MR1458613
- Gnedenko, B. V., 10.2307/1968974, Ann. Math. 44 (1943), 423-453. (1943) Zbl0063.01643MR0008655DOI10.2307/1968974
- Hlubinka, D., Extremes of spheroid shape factor based on two dimensional profiles, Kybernetika (to appear). MR2208521
- Hlubinka, D., 10.1023/A:1026234329084, Extremes 6 (2003), 5-24. (2003) Zbl1051.60011MR2021590DOI10.1023/A:1026234329084
- Hlubinka, D., Stereology of extremes; size of spheroids, Math. Bohem. 128 (2003), 419-438. (2003) Zbl1053.60053MR2032479
- Hlubinka, D., Bivariate models for extremes in stereology, Tech. Rep., KPMS, Charles University in Prague (2005). (2005) MR2021590
- Johnson, N. L., Kotz, S., 10.1080/03610927508827258, Commun. Stat. 4 (1975), 415-427. (1975) Zbl0342.62006MR0373155DOI10.1080/03610927508827258
- Nelsen, R. B., 10.1007/978-1-4757-3076-0_1, Springer New York (1999). (1999) MR1653203DOI10.1007/978-1-4757-3076-0_1
- Ohser, J., Mücklich, F., Statistical Analysis of Microstructures in Materials Science, Wiley Chichester (2000). (2000)
- Rodríguez-Lallena, J. A., Úbeda-Flores, M., 10.1016/j.spl.2003.09.010, Stat. Probab. Lett. 66 (2004), 315-325. (2004) Zbl1102.62054MR2045476DOI10.1016/j.spl.2003.09.010
- Takahashi, R., Sibuya, M., 10.1007/BF00049294, Ann. Inst. Stat. Math. 48 (1996), 127-144. (1996) Zbl0864.60010MR1392521DOI10.1007/BF00049294
- Takahashi, R., Sibuya, M., 10.1023/A:1003451417655, Ann. Inst. Stat. Math. 50 (1998), 361-377. (1998) Zbl0986.62075MR1868939DOI10.1023/A:1003451417655
- Takahashi, R., Sibuya, M., 10.1023/A:1014697919230, Ann. Inst. Stat. Math. 53 (2001), 647-660. (2001) Zbl1078.62525MR1868897DOI10.1023/A:1014697919230
- Takahashi, R., Sibuya, M., 10.1023/A:1020982025786, Extremes 5 (2002), 55-70. (2002) MR1947788DOI10.1023/A:1020982025786
- Takahashi, R., Sibuya, M., 10.1002/asmb.477, Appl. Stoch. Models Bus. Ind. 18 (2002), 301-312. (2002) Zbl1010.62113MR1932643DOI10.1002/asmb.477
- Weissman, I., Estimation of parameters and large quantiles based on the largest observations, J. Am. Stat. Assoc. 73 (1978), 812-815. (1978) Zbl0397.62034MR0521329
- Wicksell, S. D., The corpuscle problem I. A mathematical study of a biometric problem, Biometrika 17 (1925), 84-99. (1925)
- Wicksell, S. D., The corpuscle problem II, Biometrika 18 (1926), 152-172. (1926)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.