On a -Kasch spaces

Ali Akbar Estaji; Melvin Henriksen

Archivum Mathematicum (2010)

  • Volume: 046, Issue: 4, page 251-262
  • ISSN: 0044-8753

Abstract

top
If X is a Tychonoff space, C ( X ) its ring of real-valued continuous functions. In this paper, we study non-essential ideals in C ( X ) . Let a be a infinite cardinal, then X is called a -Kasch (resp. a ¯ -Kasch) space if given any ideal (resp. z -ideal) I with gen ( I ) < a then I is a non-essential ideal. We show that X is an 0 -Kasch space if and only if X is an almost P -space and X is an 1 -Kasch space if and only if X is a pseudocompact and almost P -space. Let C F ( X ) denote the socle of C ( X ) . For a topological space X with only a finite number of isolated points, we show that X is an a -Kasch space if and only if C ( X ) C F ( X ) is an a -Kasch ring.

How to cite

top

Estaji, Ali Akbar, and Henriksen, Melvin. "On $a$-Kasch spaces." Archivum Mathematicum 046.4 (2010): 251-262. <http://eudml.org/doc/116490>.

@article{Estaji2010,
abstract = {If $X$ is a Tychonoff space, $C(X)$ its ring of real-valued continuous functions. In this paper, we study non-essential ideals in $C(X)$. Let $a$ be a infinite cardinal, then $X$ is called $a$-Kasch (resp. $\bar\{a\}$-Kasch) space if given any ideal (resp. $z$-ideal) $I$ with $\operatorname\{gen\}\,(I)<a$ then $I$ is a non-essential ideal. We show that $X$ is an $\aleph _0$-Kasch space if and only if $X$ is an almost $P$-space and $X$ is an $\aleph _1$-Kasch space if and only if $X$ is a pseudocompact and almost $P$-space. Let $C_F(X)$ denote the socle of $C(X)$. For a topological space $X$ with only a finite number of isolated points, we show that $X$ is an $a$-Kasch space if and only if $\frac\{C(X)\}\{C_F(X)\}$ is an $a$-Kasch ring.},
author = {Estaji, Ali Akbar, Henriksen, Melvin},
journal = {Archivum Mathematicum},
keywords = {$a$-Kasch space; almost $P$-space; basically disconnected; $C$-embedded; essential ideal; extremally disconnected; fixed ideal; free ideal; Kasch ring; $P$-space; pseudocompact space; Stone-Čech compactification; socle; realcompactification; -Kasch space; almost -space; -embedded; essential ideal; extremally disconnected; fixed ideal; free ideal; Kasch ring; -space},
language = {eng},
number = {4},
pages = {251-262},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On $a$-Kasch spaces},
url = {http://eudml.org/doc/116490},
volume = {046},
year = {2010},
}

TY - JOUR
AU - Estaji, Ali Akbar
AU - Henriksen, Melvin
TI - On $a$-Kasch spaces
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 4
SP - 251
EP - 262
AB - If $X$ is a Tychonoff space, $C(X)$ its ring of real-valued continuous functions. In this paper, we study non-essential ideals in $C(X)$. Let $a$ be a infinite cardinal, then $X$ is called $a$-Kasch (resp. $\bar{a}$-Kasch) space if given any ideal (resp. $z$-ideal) $I$ with $\operatorname{gen}\,(I)<a$ then $I$ is a non-essential ideal. We show that $X$ is an $\aleph _0$-Kasch space if and only if $X$ is an almost $P$-space and $X$ is an $\aleph _1$-Kasch space if and only if $X$ is a pseudocompact and almost $P$-space. Let $C_F(X)$ denote the socle of $C(X)$. For a topological space $X$ with only a finite number of isolated points, we show that $X$ is an $a$-Kasch space if and only if $\frac{C(X)}{C_F(X)}$ is an $a$-Kasch ring.
LA - eng
KW - $a$-Kasch space; almost $P$-space; basically disconnected; $C$-embedded; essential ideal; extremally disconnected; fixed ideal; free ideal; Kasch ring; $P$-space; pseudocompact space; Stone-Čech compactification; socle; realcompactification; -Kasch space; almost -space; -embedded; essential ideal; extremally disconnected; fixed ideal; free ideal; Kasch ring; -space
UR - http://eudml.org/doc/116490
ER -

References

top
  1. Azarpanah, F., 10.1007/BF01876485, Period. Math. Hungar. 3 (12) (1995), 105–112. (1995) Zbl0869.54021MR1609417DOI10.1007/BF01876485
  2. Azarpanah, F., 10.1090/S0002-9939-97-04086-0, Proc. Amer. Math. Soc. 125 (1997), 2149–2154. (1997) Zbl0867.54023MR1422843DOI10.1090/S0002-9939-97-04086-0
  3. Azarpanah, F., On almost P -space, Far East J. Math. Sci. Special volume (2000), 121–132. (2000) MR1761076
  4. Azarpanah, F., Karamzadeh, O. A. S., Aliabad, A. R., On z -ideals in C ( X ) , Fund. Math. 160 (1999), 15–25. (1999) Zbl0991.54014MR1694400
  5. Dietrich, W. E., Jr.,, On the ideal structure of C ( X ) , Trans. Amer. Math. Soc. 152 (1970), 61–77. (1970) Zbl0205.42402MR0265941
  6. Donne, A. Le, On a question concerning countably generated z -ideal of C ( X ) , Proc. Amer. Math. Soc. 80 (1980), 505–510. (1980) MR0581015
  7. Engelking, R., General topology, mathematical monographs, vol. 60 ed., PWN Polish Scientific publishers, 1977. (1977) Zbl0373.54002MR0500780
  8. Gillman, L., Jerison, M., Rings of continuous functions, Springer-Verlag, 1979. (1979) MR0407579
  9. Goodearl, K. R., Von Neumann regular rings, Pitman, San Francisco, 1979. (1979) Zbl0411.16007MR0533669
  10. Karamzadeh, O. A. S., Rostami, M., On the intrinsic topology and some related ideals of C ( X ) , Proc. Amer. Math. Soc. 93 (1985), 179–184. (1985) Zbl0524.54013MR0766552
  11. Lam, Tsit-Yuen, Lectures on Modules and Rings, Springer, 1999. (1999) 
  12. Levy, R., Almost P -spaces, Can. J. Math. 29 (1977), 284–288. (1977) Zbl0342.54032MR0464203
  13. Marco, G. De, On the countably generated z -ideal of C ( X ) , Proc. Amer. Math. Soc. 31 (1972), 574–576. (1972) MR0288563
  14. Nunzetta, P., Plank, D., Closed ideal in C ( X ) , Proc. Amer. Math. Soc. 35 (2) (1972), 601–606. (1972) MR0303496

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.