On -Kasch spaces
Ali Akbar Estaji; Melvin Henriksen
Archivum Mathematicum (2010)
- Volume: 046, Issue: 4, page 251-262
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topEstaji, Ali Akbar, and Henriksen, Melvin. "On $a$-Kasch spaces." Archivum Mathematicum 046.4 (2010): 251-262. <http://eudml.org/doc/116490>.
@article{Estaji2010,
abstract = {If $X$ is a Tychonoff space, $C(X)$ its ring of real-valued continuous functions. In this paper, we study non-essential ideals in $C(X)$. Let $a$ be a infinite cardinal, then $X$ is called $a$-Kasch (resp. $\bar\{a\}$-Kasch) space if given any ideal (resp. $z$-ideal) $I$ with $\operatorname\{gen\}\,(I)<a$ then $I$ is a non-essential ideal. We show that $X$ is an $\aleph _0$-Kasch space if and only if $X$ is an almost $P$-space and $X$ is an $\aleph _1$-Kasch space if and only if $X$ is a pseudocompact and almost $P$-space. Let $C_F(X)$ denote the socle of $C(X)$. For a topological space $X$ with only a finite number of isolated points, we show that $X$ is an $a$-Kasch space if and only if $\frac\{C(X)\}\{C_F(X)\}$ is an $a$-Kasch ring.},
author = {Estaji, Ali Akbar, Henriksen, Melvin},
journal = {Archivum Mathematicum},
keywords = {$a$-Kasch space; almost $P$-space; basically disconnected; $C$-embedded; essential ideal; extremally disconnected; fixed ideal; free ideal; Kasch ring; $P$-space; pseudocompact space; Stone-Čech compactification; socle; realcompactification; -Kasch space; almost -space; -embedded; essential ideal; extremally disconnected; fixed ideal; free ideal; Kasch ring; -space},
language = {eng},
number = {4},
pages = {251-262},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On $a$-Kasch spaces},
url = {http://eudml.org/doc/116490},
volume = {046},
year = {2010},
}
TY - JOUR
AU - Estaji, Ali Akbar
AU - Henriksen, Melvin
TI - On $a$-Kasch spaces
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 4
SP - 251
EP - 262
AB - If $X$ is a Tychonoff space, $C(X)$ its ring of real-valued continuous functions. In this paper, we study non-essential ideals in $C(X)$. Let $a$ be a infinite cardinal, then $X$ is called $a$-Kasch (resp. $\bar{a}$-Kasch) space if given any ideal (resp. $z$-ideal) $I$ with $\operatorname{gen}\,(I)<a$ then $I$ is a non-essential ideal. We show that $X$ is an $\aleph _0$-Kasch space if and only if $X$ is an almost $P$-space and $X$ is an $\aleph _1$-Kasch space if and only if $X$ is a pseudocompact and almost $P$-space. Let $C_F(X)$ denote the socle of $C(X)$. For a topological space $X$ with only a finite number of isolated points, we show that $X$ is an $a$-Kasch space if and only if $\frac{C(X)}{C_F(X)}$ is an $a$-Kasch ring.
LA - eng
KW - $a$-Kasch space; almost $P$-space; basically disconnected; $C$-embedded; essential ideal; extremally disconnected; fixed ideal; free ideal; Kasch ring; $P$-space; pseudocompact space; Stone-Čech compactification; socle; realcompactification; -Kasch space; almost -space; -embedded; essential ideal; extremally disconnected; fixed ideal; free ideal; Kasch ring; -space
UR - http://eudml.org/doc/116490
ER -
References
top- Azarpanah, F., 10.1007/BF01876485, Period. Math. Hungar. 3 (12) (1995), 105–112. (1995) Zbl0869.54021MR1609417DOI10.1007/BF01876485
- Azarpanah, F., 10.1090/S0002-9939-97-04086-0, Proc. Amer. Math. Soc. 125 (1997), 2149–2154. (1997) Zbl0867.54023MR1422843DOI10.1090/S0002-9939-97-04086-0
- Azarpanah, F., On almost -space, Far East J. Math. Sci. Special volume (2000), 121–132. (2000) MR1761076
- Azarpanah, F., Karamzadeh, O. A. S., Aliabad, A. R., On -ideals in , Fund. Math. 160 (1999), 15–25. (1999) Zbl0991.54014MR1694400
- Dietrich, W. E., Jr.,, On the ideal structure of , Trans. Amer. Math. Soc. 152 (1970), 61–77. (1970) Zbl0205.42402MR0265941
- Donne, A. Le, On a question concerning countably generated -ideal of , Proc. Amer. Math. Soc. 80 (1980), 505–510. (1980) MR0581015
- Engelking, R., General topology, mathematical monographs, vol. 60 ed., PWN Polish Scientific publishers, 1977. (1977) Zbl0373.54002MR0500780
- Gillman, L., Jerison, M., Rings of continuous functions, Springer-Verlag, 1979. (1979) MR0407579
- Goodearl, K. R., Von Neumann regular rings, Pitman, San Francisco, 1979. (1979) Zbl0411.16007MR0533669
- Karamzadeh, O. A. S., Rostami, M., On the intrinsic topology and some related ideals of , Proc. Amer. Math. Soc. 93 (1985), 179–184. (1985) Zbl0524.54013MR0766552
- Lam, Tsit-Yuen, Lectures on Modules and Rings, Springer, 1999. (1999)
- Levy, R., Almost -spaces, Can. J. Math. 29 (1977), 284–288. (1977) Zbl0342.54032MR0464203
- Marco, G. De, On the countably generated -ideal of , Proc. Amer. Math. Soc. 31 (1972), 574–576. (1972) MR0288563
- Nunzetta, P., Plank, D., Closed ideal in , Proc. Amer. Math. Soc. 35 (2) (1972), 601–606. (1972) MR0303496
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.