Theory of rapid variation on time scales with applications to dynamic equations
Archivum Mathematicum (2010)
- Volume: 046, Issue: 4, page 263-284
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topVítovec, Jiří. "Theory of rapid variation on time scales with applications to dynamic equations." Archivum Mathematicum 046.4 (2010): 263-284. <http://eudml.org/doc/116491>.
@article{Vítovec2010,
abstract = {In the first part of this paper we establish the theory of rapid variation on time scales, which corresponds to existing theory from continuous and discrete cases. We introduce two definitions of rapid variation on time scales. We will study their properties and then show the relation between them. In the second part of this paper, we establish necessary and sufficient conditions for all positive solutions of the second order half-linear dynamic equations on time scales to be rapidly varying. Note that these results are new even for the linear (dynamic) case and for the half-linear discrete case. In the third part of this paper we give a complete characterization of all positive solutions of linear dynamic equations and of all positive decreasing solutions of half-linear dynamic equations with respect to their regularly or rapidly varying behavior. The paper is finished by concluding comments and open problems of these themes.},
author = {Vítovec, Jiří},
journal = {Archivum Mathematicum},
keywords = {rapidly varying function; rapidly varying sequence; Karamata function; time scale; second order dynamic equation; rapidly varying function; rapidly varying sequence; Karamata function; time scale; second order dynamic equation},
language = {eng},
number = {4},
pages = {263-284},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Theory of rapid variation on time scales with applications to dynamic equations},
url = {http://eudml.org/doc/116491},
volume = {046},
year = {2010},
}
TY - JOUR
AU - Vítovec, Jiří
TI - Theory of rapid variation on time scales with applications to dynamic equations
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 4
SP - 263
EP - 284
AB - In the first part of this paper we establish the theory of rapid variation on time scales, which corresponds to existing theory from continuous and discrete cases. We introduce two definitions of rapid variation on time scales. We will study their properties and then show the relation between them. In the second part of this paper, we establish necessary and sufficient conditions for all positive solutions of the second order half-linear dynamic equations on time scales to be rapidly varying. Note that these results are new even for the linear (dynamic) case and for the half-linear discrete case. In the third part of this paper we give a complete characterization of all positive solutions of linear dynamic equations and of all positive decreasing solutions of half-linear dynamic equations with respect to their regularly or rapidly varying behavior. The paper is finished by concluding comments and open problems of these themes.
LA - eng
KW - rapidly varying function; rapidly varying sequence; Karamata function; time scale; second order dynamic equation; rapidly varying function; rapidly varying sequence; Karamata function; time scale; second order dynamic equation
UR - http://eudml.org/doc/116491
ER -
References
top- Bingham, N. H., Goldie, C. M., Teugels, J. L., Regular Variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge Univ. Press, 1987. (1987) Zbl0617.26001MR0898871
- Bohner, M., Peterson, A. C., Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001. (2001) Zbl0978.39001MR1843232
- Bojanić, R., Seneta, E., 10.1007/BF01214468, Math. Z. 134 (1973), 91–106. (1973) MR0333082DOI10.1007/BF01214468
- Djurčić, D., Kočinac, L. D. R, Žižović, M. R., 10.1016/j.jmaa.2006.05.024, J. Math. Anal. Appl. 327 (2007), 1297–1306. (2007) Zbl1116.26002MR2280005DOI10.1016/j.jmaa.2006.05.024
- Djurčić, D., Torgašev, A., 10.1007/s10114-005-0684-4, Acta Math. Sinica 22 (2006), 689–692. (2006) Zbl1170.26300MR2219678DOI10.1007/s10114-005-0684-4
- Došlý, O., Řehák, P., Half-linear Differential Equations, North Holland Mathematics Studies Series, Elsevier, 2005. (2005) Zbl1090.34001MR2158903
- Galambos, J., Seneta, E., 10.1090/S0002-9939-1973-0323963-5, Proc. Amer. Math. Soc. 41 (1973), 110–116. (1973) Zbl0247.26002MR0323963DOI10.1090/S0002-9939-1973-0323963-5
- Geluk, J. L., de Haan, L., Regular Variation, Extensions and Tauberian Theorems, CWI Tract 40, Amsterdam, 1987. (1987) Zbl0624.26003MR0906871
- Hilger, S., Ein Maß kettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. thesis, Universität of Würzburg, 1988. (1988)
- Jaroš, J., Kusano, T., Tanigawa, T., 10.1007/BF03322729, Results Math. 43 (2003), 129–149. (2003) Zbl1047.34034MR1962855DOI10.1007/BF03322729
- Karamata, J., Sur certain “Tauberian theorems” de M. M. Hardy et Littlewood, Mathematica (Cluj) 3 (1930), 33–48. (1930)
- Karamata, J., Sur un mode de croissance régulière. Théorèmes fondamentaux, Bull. Soc. Math. France 61 (1933), 55–62. (1933) Zbl0008.00807MR1504998
- Marić, V., 10.1007/BFb0103952, Lecture Notes in Math., vol. 1726, Springer-Verlag, Berlin-Heidelberg-New York, 2000. (2000) MR1753584DOI10.1007/BFb0103952
- Marić, V., Tomić, M., A classification of solutions of second order linear differential equations by means of regularly varying functions, Publ. Inst. Math. (Beograd) (N.S.) 48 (1990), 199–207. (1990) MR1105154
- Matucci, S., Řehák, P., 10.1080/10236190701466728, J. Differ. Equations Appl. 14 (2008), 17–30. (2008) Zbl1147.26002MR2378889DOI10.1080/10236190701466728
- Matucci, S., Řehák, P., Second order linear difference equations and Karamata sequences, J. Differ. Equations Appl. 3 (2008), 277–288. (2008) MR2548130
- Matucci, S., Řehák, P., 10.1016/j.mcm.2008.09.002, Math. Comput. Modelling 49 (2009), 1692–1699. (2009) Zbl1165.39308MR2509016DOI10.1016/j.mcm.2008.09.002
- Řehák, P., Half-linear dynamic equations on time scales: IVP and oscillatory properties, Nonlinear Funct. Anal. Appl. 7 (2002), 361–404. (2002) Zbl1037.34002MR1946469
- Řehák, P., Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl. 5 (2005), 495–507. (2005) Zbl1107.26015MR2211854
- Řehák, P., Regular variation on time scales and dynamic equations, Aust. J. Math. Anal. Appl. 5 (2008), 1–10. (2008) Zbl1167.26301MR2461676
- Řehák, P., Vítovec, J., -Karamata functions and second order -difference equations, submitted.
- Řehák, P., Vítovec, J., 10.1088/1751-8113/41/49/495203, J. Phys. A: Math. Theor. 41 (2008), 495203, 1–10. (2008) Zbl1171.39006MR2515897DOI10.1088/1751-8113/41/49/495203
- Řehák, P., Vítovec, J., Regularly varying decreasing solutions of half-linear dynamic equations, Proceedings of the 12th ICDEA, Lisabon, 2008. (2008)
- Řehák, P., Vítovec, J., 10.1016/j.na.2009.06.078, Nonlinear Analysis TMA 72 (2010), 439–448. (2010) Zbl1179.26005MR2574953DOI10.1016/j.na.2009.06.078
- Seneta, E., Regularly Varying Functions, Lecture Notes in Math., vol. 508, Springer-Verlag, Berlin-Heidelberg-New York, 1976. (1976) Zbl0324.26002MR0453936
- Weissman, I., 10.1007/BF01174722, Math. Z. 151 (1976), 29–30. (1976) MR0417349DOI10.1007/BF01174722
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.