-regularly varying functions in approximation theory.
Page 1 Next
Jansche, Stefan (1997)
Journal of Inequalities and Applications [electronic only]
S. Aljancic, D. Arandjelovic (1977)
Publications de l'Institut Mathématique [Elektronische Ressource]
Vojislav Marić, Miodrag Tomić (1990)
Publications de l'Institut Mathématique
Patrick Martinez (2010)
ESAIM: Control, Optimisation and Calculus of Variations
We consider the wave equation damped with a boundary nonlinear velocity feedback p(u'). Under some geometrical conditions, we prove that the energy of the system decays to zero with an explicit decay rate estimate even if the function ρ has not a polynomial behavior in zero. This work extends some results of Nakao, Haraux, Zuazua and Komornik, who studied the case where the feedback has a polynomial behavior in zero and completes a result of Lasiecka and Tataru. The proof is based on the construction...
Ishay Weissman (1976)
Mathematische Zeitschrift
Đurčić, Dragan, Božin, Vladimir (1997)
Publications de l'Institut Mathématique. Nouvelle Série
Djurčić, Dragan, Torgašev, Aleksandar (2009)
Abstract and Applied Analysis
Ranko Bojanic, Eugene Seneta (1973)
Mathematische Zeitschrift
Szekeres, George (1998)
Experimental Mathematics
A.J. Parsloe (1982)
Aequationes mathematicae
A.J. Parsloe (1982)
Aequationes mathematicae
B. Stanković (2006)
Publications de l'Institut Mathématique
Ivan D. Arandjelović, Dojčin S. Petković (2008)
Kragujevac Journal of Mathematics
E. Seneta (1973)
Publications de l'Institut Mathématique
E. Seneta (1973)
Publications de l'Institut Mathématique [Elektronische Ressource]
Jaroslav Jaroš, Kusano Takaŝi, Jelena Manojlović (2013)
Open Mathematics
Positive solutions of the nonlinear second-order differential equation are studied under the assumption that p, q are generalized regularly varying functions. An application of the theory of regular variation gives the possibility of obtaining necessary and sufficient conditions for existence of three possible types of intermediate solutions, together with the precise information about asymptotic behavior at infinity of all solutions belonging to each type of solution classes.
Fraga Alves, M.I. (1999)
Portugaliae Mathematica
S. Aljančić (1973)
Matematički Vesnik
Edward Omey (1988)
Publications de l'Institut Mathématique
Mousa Jaber Abu Elshour, Vjacheslav Evtukhov (2017)
Archivum Mathematicum
Asymptotic representations of some classes of solutions of nonautonomous ordinary differential -th order equations which somewhat are close to linear equations are established.
Page 1 Next