Special Einstein’s equations on Kähler manifolds
Irena Hinterleitner; Volodymyr Kiosak
Archivum Mathematicum (2010)
- Volume: 046, Issue: 5, page 333-337
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topHinterleitner, Irena, and Kiosak, Volodymyr. "Special Einstein’s equations on Kähler manifolds." Archivum Mathematicum 046.5 (2010): 333-337. <http://eudml.org/doc/116496>.
@article{Hinterleitner2010,
abstract = {This work is devoted to the study of Einstein equations with a special shape of the energy-momentum tensor. Our results continue Stepanov’s classification of Riemannian manifolds according to special properties of the energy-momentum tensor to Kähler manifolds. We show that in this case the number of classes reduces.},
author = {Hinterleitner, Irena, Kiosak, Volodymyr},
journal = {Archivum Mathematicum},
keywords = {Einstein’s equations; Kähler manifolds; pseudo-Riemannian spaces; Riemannian spaces; Einstein's equation; Kähler manifold; pseudo-Riemannian space; Riemannian space},
language = {eng},
number = {5},
pages = {333-337},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Special Einstein’s equations on Kähler manifolds},
url = {http://eudml.org/doc/116496},
volume = {046},
year = {2010},
}
TY - JOUR
AU - Hinterleitner, Irena
AU - Kiosak, Volodymyr
TI - Special Einstein’s equations on Kähler manifolds
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 5
SP - 333
EP - 337
AB - This work is devoted to the study of Einstein equations with a special shape of the energy-momentum tensor. Our results continue Stepanov’s classification of Riemannian manifolds according to special properties of the energy-momentum tensor to Kähler manifolds. We show that in this case the number of classes reduces.
LA - eng
KW - Einstein’s equations; Kähler manifolds; pseudo-Riemannian spaces; Riemannian spaces; Einstein's equation; Kähler manifold; pseudo-Riemannian space; Riemannian space
UR - http://eudml.org/doc/116496
ER -
References
top- Eisenhart, L. P., Non-Riemannian Geometry, Princeton University Press, 1926, Amer. Math. Soc. Colloquium Publications 8 (2000). (1926) MR1466961
- Hall, G. S., Lorentz manifolds and general relativity theory, Differential geometry (Warsaw, 1979), Banach Center Publ. 12 (1984), 47–52. (1984) Zbl0546.53050MR0961072
- Mikeš, J., 10.1007/BF02414875, J. Math. Sci. 89 (3) (1998), 1334–1353. (1998) MR1619720DOI10.1007/BF02414875
- Mikeš, J., Vanžurová, A., Hinterleitner, I., Geodesic mappings and some generalizations, Palacky University Press, Olomouc, 2009. (2009) Zbl1222.53002MR2682926
- Petrov, A. Z., New methods in the general theory of relativity, Nauka, Moscow, 1966. (1966) MR0207365
- Reboucas, M. J., Santos, J., Teixeira, A. F. F., 10.1590/S0103-97332004000300034, Brazil. J. Phys. 34 (2A) (2004), 535–543. (2004) DOI10.1590/S0103-97332004000300034
- Schouten, J. A., Struik, D. J., Einführung in die neueren Methoden der Differentialgeometrie, Groningen, P. Noordhoff, 1935. (1935) Zbl0011.17404
- Stepanov, S. E., The seven classes of almost symplectic structures, Webs and quasigroups, Tver. Gos. Univ., Tver', 1992, pp. 93–96. (1992) Zbl0862.53030MR1227168
- Stepanov, S. E., 10.1007/BF02634197, Theoret. and Math. Phys. 111 (1) (1997), 419–427. (1997) MR1473424DOI10.1007/BF02634197
- Stepanov, S. E., Tsyganok, I. I., The seven classes of the Einstein equations, arXiv:1001.4673v1.
- Yano, K., Differential geometry of complex and almost comlex spaces, Pergamon Press, 1965. (1965)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.