On the existence of pseudosymmetric Kähler manifolds
Zbigniew Olszak (2003)
Colloquium Mathematicae
Similarity:
It is proved that there exists a non-semisymmetric pseudosymmetric Kähler manifold of dimension 4.
Zbigniew Olszak (2003)
Colloquium Mathematicae
Similarity:
It is proved that there exists a non-semisymmetric pseudosymmetric Kähler manifold of dimension 4.
Włodzimierz Jelonek (2001)
Annales Polonici Mathematici
Similarity:
We describe homogeneous manifolds with generic Ricci tensor. We also prove that if 𝔤 is a 4-dimensional unimodular Lie algebra such that dim[𝔤,𝔤] ≤ 2 then every left-invariant metric on the Lie group G with Lie algebra 𝔤 admits two mutually opposite compatible left-invariant almost Kähler structures.
Andrzej Derdziński (1983)
Compositio Mathematica
Similarity:
Lemence, R.S., Oguro, T., Sekigawa, K. (2004)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Simone Calamai, David Petrecca (2017)
Complex Manifolds
Similarity:
In this short note, we prove that a Calabi extremal Kähler-Ricci soliton on a compact toric Kähler manifold is Einstein. This settles for the class of toric manifolds a general problem stated by the authors that they solved only under some curvature assumptions.
Tamássy, L., De, U.C., Binh, T.Q. (2000)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
McKenzie Y. Wang (1992)
Mathematische Zeitschrift
Similarity:
Pyo, Y.-S., Kim, H.S. (2001)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
Philippe Delanoë (1990)
Compositio Mathematica
Similarity:
G. Tian (1987)
Inventiones mathematicae
Similarity:
Vaisman, Izu (2003)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity: