Planar flows of incompressible heat-conducting shear-thinning fluids — existence analysis
Miroslav Bulíček; Oldřich Ulrych
Applications of Mathematics (2011)
- Volume: 56, Issue: 1, page 7-38
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBulíček, Miroslav, and Ulrych, Oldřich. "Planar flows of incompressible heat-conducting shear-thinning fluids — existence analysis." Applications of Mathematics 56.1 (2011): 7-38. <http://eudml.org/doc/116502>.
@article{Bulíček2011,
abstract = {We study the flow of an incompressible homogeneous fluid whose material coefficients depend on the temperature and the shear-rate. For large class of models we establish the existence of a suitable weak solution for two-dimensional flows of fluid in a bounded domain. The proof relies on the reconstruction of the globally integrable pressure, available due to considered Navier’s slip boundary conditions, and on the so-called $L^\infty $-truncation method, used to obtain the strong convergence of the velocity gradient. The important point of the approach consists in the choice of an appropriate form of the balance of energy.},
author = {Bulíček, Miroslav, Ulrych, Oldřich},
journal = {Applications of Mathematics},
keywords = {heat-conducting fluid; non-Newtonian fluid; shear-thinning fluid; existence; weak solution; suitable weak solution; $L^\{\infty \}$-truncation method; balance of energy; heat-conducting fluid; non-Newtonian fluid; shear-thinning fluid; suitable weak solution; -truncation method; balance of energy},
language = {eng},
number = {1},
pages = {7-38},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Planar flows of incompressible heat-conducting shear-thinning fluids — existence analysis},
url = {http://eudml.org/doc/116502},
volume = {56},
year = {2011},
}
TY - JOUR
AU - Bulíček, Miroslav
AU - Ulrych, Oldřich
TI - Planar flows of incompressible heat-conducting shear-thinning fluids — existence analysis
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 1
SP - 7
EP - 38
AB - We study the flow of an incompressible homogeneous fluid whose material coefficients depend on the temperature and the shear-rate. For large class of models we establish the existence of a suitable weak solution for two-dimensional flows of fluid in a bounded domain. The proof relies on the reconstruction of the globally integrable pressure, available due to considered Navier’s slip boundary conditions, and on the so-called $L^\infty $-truncation method, used to obtain the strong convergence of the velocity gradient. The important point of the approach consists in the choice of an appropriate form of the balance of energy.
LA - eng
KW - heat-conducting fluid; non-Newtonian fluid; shear-thinning fluid; existence; weak solution; suitable weak solution; $L^{\infty }$-truncation method; balance of energy; heat-conducting fluid; non-Newtonian fluid; shear-thinning fluid; suitable weak solution; -truncation method; balance of energy
UR - http://eudml.org/doc/116502
ER -
References
top- Bergh, J., Löfström, J., Interpolation Spaces. An Introduction. Grundlehren der mathematischen Wissenschaften, No. 223, Springer Berlin-Heidelberg-New York (1976). (1976) MR0482275
- Boccardo, L., Dall'Aglio, A., Gallouët, T., Orsina, L., 10.1006/jfan.1996.3040, J. Funct. Anal. 147 (1997), 237-258. (1997) MR1453181DOI10.1006/jfan.1996.3040
- Boccardo, L., Gallouët, T., 10.1016/0022-1236(89)90005-0, J. Funct. Anal. 87 (1989), 149-169. (1989) MR1025884DOI10.1016/0022-1236(89)90005-0
- Boccardo, L., Murat, F., 10.1016/0362-546X(92)90023-8, Nonlinear Anal., Theory Methods Appl. 19 (1992), 581-597. (1992) Zbl0783.35020MR1183665DOI10.1016/0362-546X(92)90023-8
- Bulíček, M., Feireisl, E., Málek, J., A Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients, Nonlinear Anal., Real World Appl. 10 (2009), 992-1015. (2009) Zbl1167.76316MR2474275
- Bulíček, M., Málek, J., Rajagopal, K. R., 10.1137/07069540X, SIAM J. Math. Anal. 41 (2009), 665-707. (2009) Zbl1195.35239MR2515781DOI10.1137/07069540X
- Bulíček, M., Málek, J., Rajagopal, K. R., On the need for compatibility of thermal and mechanical data in flow problems, Int. J. Eng. Sci Submitted.
- Bulíček, M., Málek, J., Rajagopal, K. R., 10.1512/iumj.2007.56.2997, Indiana Univ. Math. J. 56 (2007), 51-85. (2007) Zbl1129.35055MR2305930DOI10.1512/iumj.2007.56.2997
- Caffarelli, L., Kohn, R., Nirenberg, L., 10.1002/cpa.3160350604, Commun. Pure Appl. Math. 35 (1982), 771-831. (1982) Zbl0509.35067MR0673830DOI10.1002/cpa.3160350604
- Consiglieri, L., 10.1007/PL00000952, J. Math. Fluid Mech. 2 (2000), 267-293. (2000) Zbl0974.35090MR1781916DOI10.1007/PL00000952
- Consiglieri, L., Rodrigues, J. F., Shilkin, T., A limit model for unidirectional non-Newtonian flows with nonlocal viscosity, In: Trends in Partial Differential Equations of Mathematical Physics. Progress in Nonlinear Differential Equations and Their Applications 61 Birkhäuser Basel (2005), 37-44. (2005) Zbl1080.35081MR2129608
- Feireisl, E., Málek, J., On the Navier-Stokes equations with temperature-dependent transport coefficients, Differ. Equ. Nonlinear Mech., Art. ID 90616 (electronic only) (2006). (2006) Zbl1133.35419MR2233755
- Frehse, J., Málek, J., Růžička, M., 10.1080/03605300903380746, Commun. Partial Differ. Equations 35 (2010), 1891-1919. (2010) Zbl1213.35348MR2754072DOI10.1080/03605300903380746
- Frehse, J., Málek, J., Steinhauer, M., On existence results for fluids with shear dependent viscosity---unsteady flows, In: Partial Differential Equations. Proc. ICM'98 Satellite Conference, Prague, Czech Republic, August 10-16, 1998. Res. Notes Math. 406 Chapman & Hall/CRC Boca Raton (2000), 121-129. (2000) MR1713880
- Grisvard, P., Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics 24. Pitman Adv. Publishing Program Pitman Boston-London-Melbourne (1985). (1985) Zbl0695.35060MR0775683
- Málek, J., Nečas, J., Rokyta, M., Růžička, M., Weak and Measure-Valued Solutions to Evolutionary PDEs, Chapman & Hall London (1996). (1996) MR1409366
- Málek, J., Rajagopal, K. R., Růžička, M., 10.1142/S0218202595000449, Math. Models Methods Appl. Sci. 5 (1995), 789-812. (1995) MR1348587DOI10.1142/S0218202595000449
- Rajagopal, K. R., Mechanics of non-Newtonian fluids, In: Recent Developments in Theoretical Fluid Mechanics (Paseky, 1992). Pitman Res. Notes Math. Ser. 291 Longman Scientific & Technical Harlow (1993), 129-162. (1993) Zbl0818.76003MR1268237
- Tartar, L., Compensated compactness and applications to partial differential equations, In: Nonlinear Analysis and Mechanics: Heriot-Watt Symp. Res. Notes Math. 39 Pitman Boston (1979), 121-129. (1979) Zbl0437.35004MR0584398
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.