A note on poroacoustic traveling waves under Darcy's law: Exact solutions

P. M. Jordan; J. K. Fulford

Applications of Mathematics (2011)

  • Volume: 56, Issue: 1, page 99-115
  • ISSN: 0862-7940

Abstract

top
A mathematical analysis of poroacoustic traveling wave phenomena is presented. Assuming that the fluid phase satisfies the perfect gas law and that the drag offered by the porous matrix is described by Darcy's law, exact traveling wave solutions (TWS)s, as well as asymptotic/approximate expressions, are derived and examined. In particular, stability issues are addressed, shock and acceleration waves are shown to arise, and special/limiting cases are noted. Lastly, connections to other fields are pointed out and possible extensions of this work are briefly discussed.

How to cite

top

Jordan, P. M., and Fulford, J. K.. "A note on poroacoustic traveling waves under Darcy's law: Exact solutions." Applications of Mathematics 56.1 (2011): 99-115. <http://eudml.org/doc/116506>.

@article{Jordan2011,
abstract = {A mathematical analysis of poroacoustic traveling wave phenomena is presented. Assuming that the fluid phase satisfies the perfect gas law and that the drag offered by the porous matrix is described by Darcy's law, exact traveling wave solutions (TWS)s, as well as asymptotic/approximate expressions, are derived and examined. In particular, stability issues are addressed, shock and acceleration waves are shown to arise, and special/limiting cases are noted. Lastly, connections to other fields are pointed out and possible extensions of this work are briefly discussed.},
author = {Jordan, P. M., Fulford, J. K.},
journal = {Applications of Mathematics},
keywords = {poroacoustics; Darcy's law; traveling waves; shock and acceleration waves; poroacoustics; Darcy's law; traveling wave; shock and acceleration waves},
language = {eng},
number = {1},
pages = {99-115},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on poroacoustic traveling waves under Darcy's law: Exact solutions},
url = {http://eudml.org/doc/116506},
volume = {56},
year = {2011},
}

TY - JOUR
AU - Jordan, P. M.
AU - Fulford, J. K.
TI - A note on poroacoustic traveling waves under Darcy's law: Exact solutions
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 1
SP - 99
EP - 115
AB - A mathematical analysis of poroacoustic traveling wave phenomena is presented. Assuming that the fluid phase satisfies the perfect gas law and that the drag offered by the porous matrix is described by Darcy's law, exact traveling wave solutions (TWS)s, as well as asymptotic/approximate expressions, are derived and examined. In particular, stability issues are addressed, shock and acceleration waves are shown to arise, and special/limiting cases are noted. Lastly, connections to other fields are pointed out and possible extensions of this work are briefly discussed.
LA - eng
KW - poroacoustics; Darcy's law; traveling waves; shock and acceleration waves; poroacoustics; Darcy's law; traveling wave; shock and acceleration waves
UR - http://eudml.org/doc/116506
ER -

References

top
  1. Beavers, G. S., Sparrow, E. M., 10.1016/0017-9310(71)90053-6, Int. J. Heat Mass Transfer 14 (1971), 1855-1859. (1971) DOI10.1016/0017-9310(71)90053-6
  2. Beyer, R. T., The parameter B / A , In: Nonlinear Acoustics M. F. Hamilton, D. T. Blackstock Academic Press San Diego (1997), 25-39. (1997) 
  3. Boomsma, K., Poulikakos, D., 10.1115/1.1429637, ASME J. Fluids Eng. 124 (2002), 263-272. (2002) DOI10.1115/1.1429637
  4. Christov, I., Christov, C. I., Jordan, P. M., 10.1093/qjmam/hbm017, Q. J. Mech. Appl. Math. 60 (2007), 473-495. (2007) Zbl1125.76379DOI10.1093/qjmam/hbm017
  5. Ciarletta, M., Straughan, B., Tibullo, V., 10.1016/j.mechrescom.2009.11.012, Mech. Res. Commun. 37 (2010), 137-140. (2010) Zbl1272.76219DOI10.1016/j.mechrescom.2009.11.012
  6. al., Z. E. A. Fellah et, Ultrasonic characterization of air-saturated double-layered porous media in time domain, J. Appl. Phys. 108 (2010). (2010) 
  7. Jordan, P. M., 10.1016/j.physleta.2006.02.033, Phys. Lett. A 355 (2006), 216-221. (2006) DOI10.1016/j.physleta.2006.02.033
  8. Jordan, P. M., 10.1016/j.matcom.2009.06.004, Math. Comput. Simul. 80 (2009), 202-211. (2009) MR2573280DOI10.1016/j.matcom.2009.06.004
  9. al., P. M. Jordan et, On the propagation of finite-amplitude acoustic waves in mono-relaxing media, In: Continuum Mechanics, Fluids, Heat. Proceedings of the 5th IASME/WSEAS International Conference on Continuum Mechanics, Cambridge, UK, February 23-25, 2010 S. H. Sohrab, H. J. Catrakis, N. Kobasko WSEAS Press Athens (2010), 67-72. (2010) 
  10. Kannan, K., Rajagopal, K. R., 10.1016/j.amc.2007.10.038, Appl. Math. Comput. 199 (2008), 748-759. (2008) Zbl1228.76161MR2420602DOI10.1016/j.amc.2007.10.038
  11. Makarov, S., Ochmann, M., Nonlinear and thermoviscous phenomena in acoustics, Part I, Acta Acustica united with Acustica 82 (1996), 579-606. (1996) 
  12. Málek, J., Rajagopal, K. R., 10.1016/S1874-5717(06)80008-3, In: Handbook of Differential Equations: Evolutionary Equations, Vol. 2 C. M. Dafermos, E. Feireisl Elsevier/North Holland Amsterdam (2005), 371-459. (2005) Zbl1095.35027MR2182831DOI10.1016/S1874-5717(06)80008-3
  13. Morse, P. M., Ingard, K. U., Theoretical Acoustics, McGraw-Hill New York (1968). (1968) 
  14. Nield, D. A., Bejan, A., Convection in Porous Media, 2nd ed, Springer New York (1999). (1999) Zbl0924.76001MR1656781
  15. Payne, L. E., Rodrigues, J. F., Straughan, B., 10.1002/mma.228, Math. Methods Appl. Sci. 24 (2001), 427-438. (2001) Zbl0984.76024MR1821935DOI10.1002/mma.228
  16. Pierce, A. D., Acoustics: An Introduction to its Physical Principles and Applications, Acoustical Society of America Woodbury (1989), 588-593. (1989) 
  17. Rajagopal, K. R., 10.1142/S0218202507001899, Math. Models Methods Appl. Sci. 17 (2007), 215-252. (2007) Zbl1123.76066MR2292356DOI10.1142/S0218202507001899
  18. Rajagopal, K. R., Saccomandi, G., Vergori, L., A systematic approximation for the equations governing convection-diffusion in a porous medium, Nonlinear Anal., Real World Appl. 11 (2010), 2366-2375. (2010) Zbl1194.35336MR2661906
  19. Rajagopal, K. R., Tao, L., Mechanics of Mixtures. Appendix B, World Scientific Singapore (1995). (1995) MR1370661
  20. Rajagopal, K. R., Tao, L., 10.1016/j.ijnonlinmec.2004.07.004, Int. J. Non-Linear Mech. 40 (2005), 373-380. (2005) DOI10.1016/j.ijnonlinmec.2004.07.004
  21. Saravanan, U., Rajagopal, K. R., 10.1177/10812865030084002, Math. Mech. Solids 8 (2003), 349-376. (2003) Zbl1059.74015MR1992913DOI10.1177/10812865030084002
  22. Scheidegger, A. E., The Physics of Flow Through Porous Media, 3rd ed, University of Toronto Press Toronto (1974). (1974) 
  23. Straughan, B., Stability and Wave Motion in Porous Media, Springer New York (2008). (2008) Zbl1149.76002MR2433781
  24. Thompson, P. A., Compressible-Fluid Dynamics, McGraw-Hill New York (1972). (1972) Zbl0251.76001
  25. Truesdell, C., Rajagopal, K. R., An Introduction to the Mechanics of Fluids, Birkhäuser Boston (2000). (2000) Zbl0942.76001MR1731441
  26. Whitham, G. B., Linear and Nonlinear Waves, John Wiley & Sons New York (1974). (1974) Zbl0373.76001MR0483954

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.