2D-1D dimensional reduction in a toy model for magnetoelastic interactions
Applications of Mathematics (2011)
- Volume: 56, Issue: 3, page 287-295
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topTilioua, Mouhcine. "2D-1D dimensional reduction in a toy model for magnetoelastic interactions." Applications of Mathematics 56.3 (2011): 287-295. <http://eudml.org/doc/116527>.
@article{Tilioua2011,
abstract = {The paper deals with the dimensional reduction from 2D to 1D in magnetoelastic interactions. We adopt a simplified, but nontrivial model described by the Landau-Lifshitz-Gilbert equation for the magnetization field coupled to an evolution equation for the displacement. We identify the limit problem by using the so-called energy method.},
author = {Tilioua, Mouhcine},
journal = {Applications of Mathematics},
keywords = {magnetoelastic materials; Landau-Lifshitz-Gilbert equation; dimensional reduction; magnetoelastic materials; Landau-Lifshitz-Gilbert equation; dimensional reduction},
language = {eng},
number = {3},
pages = {287-295},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {2D-1D dimensional reduction in a toy model for magnetoelastic interactions},
url = {http://eudml.org/doc/116527},
volume = {56},
year = {2011},
}
TY - JOUR
AU - Tilioua, Mouhcine
TI - 2D-1D dimensional reduction in a toy model for magnetoelastic interactions
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 3
SP - 287
EP - 295
AB - The paper deals with the dimensional reduction from 2D to 1D in magnetoelastic interactions. We adopt a simplified, but nontrivial model described by the Landau-Lifshitz-Gilbert equation for the magnetization field coupled to an evolution equation for the displacement. We identify the limit problem by using the so-called energy method.
LA - eng
KW - magnetoelastic materials; Landau-Lifshitz-Gilbert equation; dimensional reduction; magnetoelastic materials; Landau-Lifshitz-Gilbert equation; dimensional reduction
UR - http://eudml.org/doc/116527
ER -
References
top- Aharoni, A., Introduction to the Theory of Ferromagnetism, Oxford University Press London (1996). (1996)
- Brown, W. F., 10.1007/978-3-642-87396-6, Springer New York-Heidelberg-Berlin (1966). (1966) DOI10.1007/978-3-642-87396-6
- Ciarlet, P. G., Introduction to Linear Shell Theory, Gauthier-Villars Paris (1998). (1998) Zbl0912.73001MR1648549
- Ciarlet, P. G., Destuynder, Ph., A justification of the two-dimensional linear plate model, J. Mécanique 18 (1979), 315-344. (1979) Zbl0415.73072MR0533827
- Hubert, A., Schäfer, R., Magnetic Domains: The Analysis of Magnetic Microstructures, Springer New York-Berlin (1998). (1998)
- Landau, L. D., Lifshitz, E. M., Electrodynamics of Continuous Media, Pergamon Press Oxford (1986). (1986) MR0766230
- Lions, J.-L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod & Gauthier-Villars Paris (1969), French. (1969) Zbl0189.40603MR0259693
- Simon, J., Compact sets in the space , Ann. Mat. Pura Appl. 146 (1987), 65-96. (1987) MR0916688
- Valente, V., An evolutive model for magnetorestrictive interactions: existence of weak solutions, SPIE-Proceeding on Smart Structures and Materials, Modeling, Signal Processing and Control Elsevier Amsterdam (2006). (2006)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.