3D-2D Asymptotic Analysis for Micromagnetic Thin Films
Roberto Alicandro; Chiara Leone
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 6, page 489-498
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topAlicandro, Roberto, and Leone, Chiara. "3D-2D Asymptotic Analysis for Micromagnetic Thin Films." ESAIM: Control, Optimisation and Calculus of Variations 6 (2010): 489-498. <http://eudml.org/doc/116575>.
@article{Alicandro2010,
abstract = {Γ-convergence techniques and relaxation results of
constrained energy functionals are used to identify the limiting energy as the
thickness ε approaches zero of a ferromagnetic thin
structure $\Omega_\varepsilon=\omega\times(-\varepsilon,\varepsilon)$, $\omega\subset\mathbb R^2$, whose
energy is given by
$$
\{\cal E\}\_\{\varepsilon\}(\{\overline\{m\}\})=\frac\{1\}\{\varepsilon\}
\int\_\{\Omega\_\{\varepsilon\}\}\left(W(\{\overline\{m\}\},\nabla\{\overline\{m\}\})
+\{\frac\{1\}\{2\}\}\nabla \{\overline\{u\}\}\cdot \{\overline\{m\}\}\right)\,\{\rm d\}x
$$
subject to
$$
\hbox\{div\}(-\nabla \{\overline\{u\}\}+\{\overline\{m\}\}\chi\_\{\Omega\_\varepsilon\})=0
\quad\hbox\{ on \}\mathbb R^3,
$$
and to the constraint
$$
|\overline\{m\}|=1 \hbox\{ on \}\Omega\_\varepsilon,
$$
where W is any continuous function satisfying p-growth assumptions
with p> 1.
Partial results are also obtained in the case p=1, under
an additional assumption on W.
},
author = {Alicandro, Roberto, Leone, Chiara},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Γ-limit; thin films; micromagnetics; relaxation of constrained functionals.; Gamma-limit; relaxation of constrained functionals},
language = {eng},
month = {3},
pages = {489-498},
publisher = {EDP Sciences},
title = {3D-2D Asymptotic Analysis for Micromagnetic Thin Films},
url = {http://eudml.org/doc/116575},
volume = {6},
year = {2010},
}
TY - JOUR
AU - Alicandro, Roberto
AU - Leone, Chiara
TI - 3D-2D Asymptotic Analysis for Micromagnetic Thin Films
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 6
SP - 489
EP - 498
AB - Γ-convergence techniques and relaxation results of
constrained energy functionals are used to identify the limiting energy as the
thickness ε approaches zero of a ferromagnetic thin
structure $\Omega_\varepsilon=\omega\times(-\varepsilon,\varepsilon)$, $\omega\subset\mathbb R^2$, whose
energy is given by
$$
{\cal E}_{\varepsilon}({\overline{m}})=\frac{1}{\varepsilon}
\int_{\Omega_{\varepsilon}}\left(W({\overline{m}},\nabla{\overline{m}})
+{\frac{1}{2}}\nabla {\overline{u}}\cdot {\overline{m}}\right)\,{\rm d}x
$$
subject to
$$
\hbox{div}(-\nabla {\overline{u}}+{\overline{m}}\chi_{\Omega_\varepsilon})=0
\quad\hbox{ on }\mathbb R^3,
$$
and to the constraint
$$
|\overline{m}|=1 \hbox{ on }\Omega_\varepsilon,
$$
where W is any continuous function satisfying p-growth assumptions
with p> 1.
Partial results are also obtained in the case p=1, under
an additional assumption on W.
LA - eng
KW - Γ-limit; thin films; micromagnetics; relaxation of constrained functionals.; Gamma-limit; relaxation of constrained functionals
UR - http://eudml.org/doc/116575
ER -
References
top- A. Braides and A. Defranceschi, Homogenization of Multiple Integrals. Oxford University Press, Oxford (1998).
- A. Braides and I. Fonseca, Brittle thin films, Preprint CNA-CMU. Pittsburgh (1999).
- A. Braides, I. Fonseca and G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films, Preprint CNA-CMU. Pittsburgh (1999).
- W.F. Brown, Micromagnetics. John Wiley and Sons, New York (1963).
- C. Castaing and M. Valadier, Convex analysis and measurable multifunctions. Springer-Verlag, New York, Lecture Notes in Math.580 (1977).
- B. Dacorogna, Direct methods in Calculus of Variations. Springer-Verlag, Berlin (1989).
- B. Dacorogna, I. Fonseca, J. Maly and K. Trivisa, Manifold constrained variational problems. Calc. Var.9 (1999) 185-206.
- G. Dal Maso, An Introduction to Γ-convergence. Birkhäuser, Boston (1993).
- I. Fonseca and G. Francfort, 3D-2D asymptotic analysis of an optimal design problem for thin films. J. Reine Angew. Math.505 (1998) 173-202.
- I. Fonseca and G. Francfort, On the inadequacy of the scaling of linear elasticity for 3D-2D asymptotic in a nonlinear setting, Preprint CNA-CMU. Pittsburgh (1999).
- I. Fonseca and S. Müller, Quasi-convex integrands and lower semicontinuity in L1. SIAM J. Math. Anal.23 (1992) 1081-1098.
- G. Gioia and R.D. James, Micromagnetics of very thin films. Proc. Roy. Soc. Lond. Ser. A453 (1997) 213-223.
- C.B. Morrey, Quasiconvexity and the semicontinuity of multiple integrals. Pacific J. Math.2 (1952) 25-53.
- C.B. Morrey, Multiple integrals in the Calculus of Variations. Springer-Verlag, Berlin (1966).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.