Enhanced Electrical Impedance Tomography via the Mumford–Shah Functional

Luca Rondi; Fadil Santosa

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 6, page 517-538
  • ISSN: 1292-8119

Abstract

top
We consider the problem of electrical impedance tomography where conductivity distribution in a domain is to be reconstructed from boundary measurements of voltage and currents. It is well-known that this problem is highly illposed. In this work, we propose the use of the Mumford–Shah functional, developed for segmentation and denoising of images, as a regularization. After establishing existence properties of the resulting variational problem, we proceed by demonstrating the approach in several numerical examples. Our results indicate that this is an effective approach for overcoming the illposedness. Moreover, it has the capability of enhancing the reconstruction while at the same time segmenting the conductivity image.

How to cite

top

Rondi, Luca, and Santosa, Fadil. "Enhanced Electrical Impedance Tomography via the Mumford–Shah Functional." ESAIM: Control, Optimisation and Calculus of Variations 6 (2010): 517-538. <http://eudml.org/doc/116576>.

@article{Rondi2010,
abstract = { We consider the problem of electrical impedance tomography where conductivity distribution in a domain is to be reconstructed from boundary measurements of voltage and currents. It is well-known that this problem is highly illposed. In this work, we propose the use of the Mumford–Shah functional, developed for segmentation and denoising of images, as a regularization. After establishing existence properties of the resulting variational problem, we proceed by demonstrating the approach in several numerical examples. Our results indicate that this is an effective approach for overcoming the illposedness. Moreover, it has the capability of enhancing the reconstruction while at the same time segmenting the conductivity image. },
author = {Rondi, Luca, Santosa, Fadil},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Electrical impedance tomography; inverse problems for elliptic equations; regularization of illposed problem; image enhancement.; electrical impedance tomography; regularization; image enhancement},
language = {eng},
month = {3},
pages = {517-538},
publisher = {EDP Sciences},
title = {Enhanced Electrical Impedance Tomography via the Mumford–Shah Functional},
url = {http://eudml.org/doc/116576},
volume = {6},
year = {2010},
}

TY - JOUR
AU - Rondi, Luca
AU - Santosa, Fadil
TI - Enhanced Electrical Impedance Tomography via the Mumford–Shah Functional
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 6
SP - 517
EP - 538
AB - We consider the problem of electrical impedance tomography where conductivity distribution in a domain is to be reconstructed from boundary measurements of voltage and currents. It is well-known that this problem is highly illposed. In this work, we propose the use of the Mumford–Shah functional, developed for segmentation and denoising of images, as a regularization. After establishing existence properties of the resulting variational problem, we proceed by demonstrating the approach in several numerical examples. Our results indicate that this is an effective approach for overcoming the illposedness. Moreover, it has the capability of enhancing the reconstruction while at the same time segmenting the conductivity image.
LA - eng
KW - Electrical impedance tomography; inverse problems for elliptic equations; regularization of illposed problem; image enhancement.; electrical impedance tomography; regularization; image enhancement
UR - http://eudml.org/doc/116576
ER -

References

top
  1. L. Ambrosio, A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B3 (1989) 857-881.  Zbl0767.49001
  2. L. Ambrosio, Existence theory for a new class of variational problems. Arch. Rational Mech. Anal.111 (1990) 291-322.  Zbl0711.49064
  3. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Clarendon Press, Oxford (2000).  Zbl0957.49001
  4. L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ -convergence. Comm. Pure Appl. Math.43 (1990) 999-1036.  Zbl0722.49020
  5. L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problem. Boll. Un. Mat. Ital. B6 (1992) 105-123.  Zbl0776.49029
  6. A. Blake and A. Zisserman, Visual Reconstruction. The MIT Press, Cambridge Mass, London (1987).  
  7. E. Bonnetier and M. Vogelius, An elliptic regularity result for a composite medium with ``touching'' fibers of circular cross-section. SIAM J. Math. Anal.31 (2000) 651-677.  Zbl0947.35044
  8. A. Braides, Approximation of Free-Discontinuity Problems. Springer-Verlag, Berlin Heidelberg New York (1998).  Zbl0909.49001
  9. A.P. Calderón, On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics. Sociedade Brasileira de Matemática, Rio de Janeiro (1980) 65-73.  
  10. G. Congedo and I. Tamanini, On the existence of solutions to a problem in multidimensional segmentation. Ann. Inst. H. Poincaré Anal. Non Linéaire8 (1991) 175-195.  Zbl0729.49003
  11. G. Dal Maso, An Introduction to Γ -convergence. Birkhäuser, Boston Basel Berlin (1993).  Zbl0816.49001
  12. E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal.108 (1989) 195-218.  Zbl0682.49002
  13. D.C. Dobson, Stability and Regularity of an Inverse Elliptic Boundary Value Problem, Ph.D. Thesis. Rice University, Houston (1990).  
  14. D.C. Dobson and F. Santosa, An image-enhancement technique for electrical impedance tomography. Inverse Problems10 (1994) 317-334.  Zbl0805.35149
  15. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton Ann Arbor London (1992).  Zbl0804.28001
  16. V. Isakov, Inverse Problems for Partial Differential Equations. Springer-Verlag, New York Berlin Heidelberg (1998).  Zbl0908.35134
  17. E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston Basel Stuttgart (1984).  Zbl0545.49018
  18. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications. Academic Press, New York London Toronto (1980).  Zbl0457.35001
  19. R.V. Kohn and M. Vogelius, Determining conductivity by boundary measurements. Comm. Pure Appl. Math.37 (1984) 289-298.  Zbl0586.35089
  20. Y.Y. Li and M. Vogelius, Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients. Arch. Rational Mech. Anal.153 (2000) 91-151.  Zbl0958.35060
  21. N.G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci.17 (1963) 189-205.  Zbl0127.31904
  22. D. Mumford and J. Shah, Boundary detection by minimizing functionals, I, in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Press/North-Holland, Silver Spring Md./Amsterdam (1985) 22-26.  
  23. D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math.42 (1989) 577-685.  Zbl0691.49036
  24. J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem. Ann. Math.125 (1987) 153-169.  Zbl0625.35078
  25. G.M. Troianiello, Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York London (1987).  Zbl0655.35002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.