Enhanced Electrical Impedance Tomography via the Mumford–Shah Functional
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 6, page 517-538
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- L. Ambrosio, A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B3 (1989) 857-881.
- L. Ambrosio, Existence theory for a new class of variational problems. Arch. Rational Mech. Anal.111 (1990) 291-322.
- L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Clarendon Press, Oxford (2000).
- L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via-convergence. Comm. Pure Appl. Math.43 (1990) 999-1036.
- L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problem. Boll. Un. Mat. Ital. B6 (1992) 105-123.
- A. Blake and A. Zisserman, Visual Reconstruction. The MIT Press, Cambridge Mass, London (1987).
- E. Bonnetier and M. Vogelius, An elliptic regularity result for a composite medium with ``touching'' fibers of circular cross-section. SIAM J. Math. Anal.31 (2000) 651-677.
- A. Braides, Approximation of Free-Discontinuity Problems. Springer-Verlag, Berlin Heidelberg New York (1998).
- A.P. Calderón, On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics. Sociedade Brasileira de Matemática, Rio de Janeiro (1980) 65-73.
- G. Congedo and I. Tamanini, On the existence of solutions to a problem in multidimensional segmentation. Ann. Inst. H. Poincaré Anal. Non Linéaire8 (1991) 175-195.
- G. Dal Maso, An Introduction to -convergence. Birkhäuser, Boston Basel Berlin (1993).
- E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal.108 (1989) 195-218.
- D.C. Dobson, Stability and Regularity of an Inverse Elliptic Boundary Value Problem, Ph.D. Thesis. Rice University, Houston (1990).
- D.C. Dobson and F. Santosa, An image-enhancement technique for electrical impedance tomography. Inverse Problems10 (1994) 317-334.
- L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton Ann Arbor London (1992).
- V. Isakov, Inverse Problems for Partial Differential Equations. Springer-Verlag, New York Berlin Heidelberg (1998).
- E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston Basel Stuttgart (1984).
- D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications. Academic Press, New York London Toronto (1980).
- R.V. Kohn and M. Vogelius, Determining conductivity by boundary measurements. Comm. Pure Appl. Math.37 (1984) 289-298.
- Y.Y. Li and M. Vogelius, Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients. Arch. Rational Mech. Anal.153 (2000) 91-151.
- N.G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci.17 (1963) 189-205.
- D. Mumford and J. Shah, Boundary detection by minimizing functionals, I, in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Press/North-Holland, Silver Spring Md./Amsterdam (1985) 22-26.
- D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math.42 (1989) 577-685.
- J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem. Ann. Math.125 (1987) 153-169.
- G.M. Troianiello, Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York London (1987).