On the existence of solutions to a problem in multidimensional segmentation
Annales de l'I.H.P. Analyse non linéaire (1991)
- Volume: 8, Issue: 2, page 175-195
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCongedo, G., and Tamanini, I.. "On the existence of solutions to a problem in multidimensional segmentation." Annales de l'I.H.P. Analyse non linéaire 8.2 (1991): 175-195. <http://eudml.org/doc/78249>.
@article{Congedo1991,
author = {Congedo, G., Tamanini, I.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {image segmentation in computer vision; Minimal boundary problems with free discontinuity},
language = {eng},
number = {2},
pages = {175-195},
publisher = {Gauthier-Villars},
title = {On the existence of solutions to a problem in multidimensional segmentation},
url = {http://eudml.org/doc/78249},
volume = {8},
year = {1991},
}
TY - JOUR
AU - Congedo, G.
AU - Tamanini, I.
TI - On the existence of solutions to a problem in multidimensional segmentation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1991
PB - Gauthier-Villars
VL - 8
IS - 2
SP - 175
EP - 195
LA - eng
KW - image segmentation in computer vision; Minimal boundary problems with free discontinuity
UR - http://eudml.org/doc/78249
ER -
References
top- [A1m] F.J. Almgren, Existence and Regularity Almost Everywhere of Solutions to Elliptic Variations Problems with Constraints, Mem. A.M.S., Vol. 4, No. 165, 1976. Zbl0327.49043MR420406
- [A1] L. Ambrosio, A Compactness Theorem for a Special Class of Functions of Bounded Variation, Boll. Un. Mat. Ital. (to appear).
- [A2] L. Ambrosio, Existence Theory for a New Class of Variational Problems, Arch. Rat. Mech. Anal., (to appear). Zbl0711.49064MR1068374
- [A-B] L. Ambrosio and A. Braides, Functionals defined on partitions... I et II, J. Math. Pures Appl. (to appear). Zbl0676.49029
- [B-M] J. Blat and J.M. Morel, Elliptic Problems in Image Segmentation (to appear).
- [C-T1] G. Congedo and I. Tamanini, Note sulla regolarità dei minimi di funzionali del tipo dell'area, Rend. Accad. Naz. XL, 106, Vol. XII, fasc. 17, 1988, pp. 239-257. Zbl0674.49031MR985069
- [C-T2] G. Congedo and I. Tamanini, Density Theorems for Local Minimizers of Area-Type Functionals (to appear). Zbl0753.49019MR1142542
- [DeG] E. De Giorgi, Free Discontinuity Problems in Calculus of Variations, Proceedings of the meeting in J. L. Lions's honour, Paris, 1988 (to appear). Zbl0758.49002
- [DeG-A] E. De Giorgi and L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei (to appear).
- [DeG-C-L] E. De Giorgi, M. Carriero and A. Leaci, Existence Theorem for a minimum Problem with Free Discontinuity Set, Arch. Rat. Mech. Anal., Vol. 108, 1989, pp. 195-218. Zbl0682.49002MR1012174
- [DeG-C-P] E. De Giorgi, F. Colombini and L.C. Piccinini, Frontiere orientate di misura minima e questioni collegate, Editrice Tecnico Scientifica, Pisa, 1972. Zbl0296.49031
- [DeG-C-T] E. De Giorgi, G. Congedo and I. Tamanini, Problemi di regolarità per un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei (to appear).
- [F] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin, 1969. Zbl0176.00801MR257325
- [G] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984. Zbl0545.49018MR775682
- [M-M] U. Massari and M. Miranda, Minimal Surfaces of Codimension 1, North-Holland, Amsterdam, 1984. Zbl0565.49030MR795963
- [M-T] U. Massari, I. Tamanini, paper in preparation.
- [Mo-S] J.M. Morel and S. Solimini, Segmentation of Images by Variational Methods: a Constructive Approach, Rev. Mat. Univ. ComplutenseMadrid, Vol. 1, 1988, pp. 169-182. Zbl0679.68205MR977048
- [M-S] D. Mumford and J. Shah, Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems, Comm. Pure Appl. Math., Vol. 42, 1989, pp. 577-685. Zbl0691.49036MR997568
- [S] L. Simon, Lectures on Geometric Measure Theory, Center for Math. Analysis, Australian National University, Vol., 3, 1983. Zbl0546.49019MR756417
- [T1] J.E. Taylor, The Structure of Singularities in Soap-Bubble-Like and Soap-Film-Like Minimal Surfaces, Annals Math., 103, 1976, pp. 489-539. Zbl0335.49032MR428181
- [T2] J.E. Taylor, Cristalline Variational Problems, Bull. A.M.S., Vol. 84, 1978, pp. 568-588. Zbl0392.49022MR493671
Citations in EuDML Documents
top- Gian Paolo Leonardi, Suddivisioni ottimali di domini n-dimensionali
- Luca Rondi, Fadil Santosa, Enhanced electrical impedance tomography via the Mumford–Shah functional
- Ana Cristina Barroso, José Matias, On a volume constrained variational problem in SBV : part I
- A. Bonnet, On the regularity of edges in image segmentation
- Luca Rondi, Fadil Santosa, Enhanced Electrical Impedance Tomography the Mumford–Shah Functional
- Italo Tamanini, Giuseppe Congedo, Density theorems for local minimizers of area-type functionals
- Ana Cristina Barroso, José Matias, On a Volume Constrained Variational Problem in SBV²(Ω): Part I
- Raphaël Cerf, Ágoston Pisztora, Phase coexistence in Ising, Potts and percolation models
- Italo Tamanini, Giuseppe Congedo, Optimal segmentation of unbounded functions
- Giuseppe Congedo, Italo Tamanini, Problemi di partizioni ottimali con dati illimitati
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.