Structure theory for the group algebra of the symmetric group, with applications to polynomial identities for the octonions
Murray R. Bremner; Sara Madariaga; Luiz A. Peresi
Commentationes Mathematicae Universitatis Carolinae (2016)
- Volume: 57, Issue: 4, page 413-452
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBremner, Murray R., Madariaga, Sara, and Peresi, Luiz A.. "Structure theory for the group algebra of the symmetric group, with applications to polynomial identities for the octonions." Commentationes Mathematicae Universitatis Carolinae 57.4 (2016): 413-452. <http://eudml.org/doc/287582>.
@article{Bremner2016,
abstract = {This is a survey paper on applications of the representation theory of the symmetric group to the theory of polynomial identities for associative and nonassociative algebras. In §1, we present a detailed review (with complete proofs) of the classical structure theory of the group algebra $\mathbb \{F\} S_n$ of the symmetric group $S_n$ over a field $\mathbb \{F\}$ of characteristic 0 (or $p > n$). The goal is to obtain a constructive version of the isomorphism $\psi \colon \bigoplus _\lambda M_\{d_\lambda \} (\mathbb \{F\}) \longrightarrow \mathbb \{F\} S_n$ where $\lambda $ is a partition of $n$ and $d_\lambda $ counts the standard tableaux of shape $\lambda $. Young showed how to compute $\psi $; to compute its inverse, we use an efficient algorithm for representation matrices discovered by Clifton. In §2, we discuss constructive methods based on §1 which allow us to analyze the polynomial identities satisfied by a specific (non)associative algebra: fill and reduce algorithm, module generators algorithm, Bondari’s algorithm for finite dimensional algebras. In §3, we study the multilinear identities satisfied by the octonion algebra $\mathbb \{O\}$ over a field of characteristic 0. For $n \le 6$ we compare our computational results with earlier work of Racine, Hentzel & Peresi, Shestakov & Zhukavets. Going one step further, we verify computationally that every identity in degree 7 is a consequence of known identities of lower degree; this result is our main original contribution. This gap (no new identities in degree 7) motivates our concluding conjecture: the known identities for $n \le 6$ generate all of the octonion identities in characteristic 0.},
author = {Bremner, Murray R., Madariaga, Sara, Peresi, Luiz A.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {symmetric group; group algebra; Young diagrams; standard tableaux; idempotents; matrix units; two-sided ideals; Wedderburn decomposition; representation theory; Clifton's algorithm; computer algebra; polynomial identities; nonassociative algebra; octonions},
language = {eng},
number = {4},
pages = {413-452},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Structure theory for the group algebra of the symmetric group, with applications to polynomial identities for the octonions},
url = {http://eudml.org/doc/287582},
volume = {57},
year = {2016},
}
TY - JOUR
AU - Bremner, Murray R.
AU - Madariaga, Sara
AU - Peresi, Luiz A.
TI - Structure theory for the group algebra of the symmetric group, with applications to polynomial identities for the octonions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 4
SP - 413
EP - 452
AB - This is a survey paper on applications of the representation theory of the symmetric group to the theory of polynomial identities for associative and nonassociative algebras. In §1, we present a detailed review (with complete proofs) of the classical structure theory of the group algebra $\mathbb {F} S_n$ of the symmetric group $S_n$ over a field $\mathbb {F}$ of characteristic 0 (or $p > n$). The goal is to obtain a constructive version of the isomorphism $\psi \colon \bigoplus _\lambda M_{d_\lambda } (\mathbb {F}) \longrightarrow \mathbb {F} S_n$ where $\lambda $ is a partition of $n$ and $d_\lambda $ counts the standard tableaux of shape $\lambda $. Young showed how to compute $\psi $; to compute its inverse, we use an efficient algorithm for representation matrices discovered by Clifton. In §2, we discuss constructive methods based on §1 which allow us to analyze the polynomial identities satisfied by a specific (non)associative algebra: fill and reduce algorithm, module generators algorithm, Bondari’s algorithm for finite dimensional algebras. In §3, we study the multilinear identities satisfied by the octonion algebra $\mathbb {O}$ over a field of characteristic 0. For $n \le 6$ we compare our computational results with earlier work of Racine, Hentzel & Peresi, Shestakov & Zhukavets. Going one step further, we verify computationally that every identity in degree 7 is a consequence of known identities of lower degree; this result is our main original contribution. This gap (no new identities in degree 7) motivates our concluding conjecture: the known identities for $n \le 6$ generate all of the octonion identities in characteristic 0.
LA - eng
KW - symmetric group; group algebra; Young diagrams; standard tableaux; idempotents; matrix units; two-sided ideals; Wedderburn decomposition; representation theory; Clifton's algorithm; computer algebra; polynomial identities; nonassociative algebra; octonions
UR - http://eudml.org/doc/287582
ER -
References
top- Amitsur A., Levitzki J., 10.1090/S0002-9939-1950-0036751-9, Proc. Amer. Math. Soc. 1 (1950), 449–463. Zbl0043.03702MR0036751DOI10.1090/S0002-9939-1950-0036751-9
- Benanti F., Demmel J., Drensky V., Koev P., Computational approach to polynomial identities of matrices---a survey, Polynomial Identities and Combinatorial Methods (Pantelleria, 2001), 141–178, Lecture Notes in Pure and Appl. Math., 235, Dekker, New York, 2003. Zbl1067.16041MR2021797
- Bergdolt G., 10.1016/0010-4655(95)00009-5, Comput. Phys. Comm. 86 (1995), no. 1–2, 97–104. Zbl0873.20013MR1327568DOI10.1016/0010-4655(95)00009-5
- Boerner H., Representations of Groups. With Special Consideration for the Needs of Modern Physics, (second English edition), North-Holland Publishing Co., Amsterdam-London, American Elsevier Publishing Co., Inc., New York, 1970. Zbl0167.02601MR0272911
- Bondari S., Constructing the Identities and the Central Identities of Degree of the Matrices, Ph.D. Thesis, Iowa State University, 1993. http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=11403&context=rtd.
- Bondari S., Constructing the polynomial identities and central identities of degree of matrices, Linear Algebra Appl. 258 (1997), 233–249. Zbl0884.15009MR1444106
- Bremner M., Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its Applications, Pure and Applied Mathematics, 300, CRC Press, Boca Raton, 2012. Zbl1237.68007MR2829731
- Bremner M., Dotsenko V., Algebraic Operads: An Algorithmic Companion, Chapman and Hall/CRC, Boca Raton, 2016. Zbl1350.18001
- Bremner M., Hentzel I., 10.1006/jsco.2001.0510, J. Symbolic Comput. 33 (2002), no. 3, 255–273. Zbl0997.17021MR1882229DOI10.1006/jsco.2001.0510
- Bremner M., Murakami L., Shestakov I., Nonassociative algebras, Chapter 69 of Handbook of Linear Algebra, edited by Leslie Hogben, Chapman & Hall/CRC, Boca Raton, 2007. MR2279160
- Bremner M., Peresi L., 10.1016/j.jalgebra.2009.06.014, J. Algebra 322 (2009), no. 6, 2000–2026. Zbl1196.17025MR2542829DOI10.1016/j.jalgebra.2009.06.014
- Bremner M., Peresi L., An application of lattice basis reduction to polynomial identities for algebraic structures, Linear Algebra Appl. 430 (2009), no. 2–3, 642–659. Zbl1173.17001MR2469318
- Bremner M., Peresi L., 10.1080/00927872.2010.488671, Comm. Algebra 39 (2011), no. 7, 2313–2337. Zbl1241.17032MR2821713DOI10.1080/00927872.2010.488671
- Clifton J., Complete sets of orthogonal tableaux, Ph.D. Thesis, Iowa State University, 1980; http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=7688&context=rtd. MR2630923
- Clifton J., A simplification of the computation of the natural representation of the symmetric group , Proc. Amer. Math. Soc. 83 (1981), no. 2, 248–250. Zbl0443.20013MR0624907
- Dehn M., 10.1007/BF01449618, Math. Ann. 85 (1922), no. 1, 184–194. MR1512061DOI10.1007/BF01449618
- Filippov V., Kharchenko V., Shestakov I. (editors), Dniester Notebook: Unsolved Problems in the Theory of Rings and Modules, Nonassociative Algebra and its Applications, 461–516, Lect. Notes Pure Appl. Math., 246, Chapman & Hall/CRC, Boca Raton, 2006; translated by Murray Bremner and Mikhail Kotchetov. http://math.usask.ca/ bremner/research/publications/dniester.pdf. MR2203726
- Drensky V., 10.1007/BF01669018, Algebra Logic 20 (1981), no. 3, 188–194. MR0648317DOI10.1007/BF01669018
- Drensky V., Kasparian A., Polynomial identities of eighth degree for matrices, Annuaire Univ. Sofia Fac. Math. Méc. 77 (1983), no. 1, 175–195. Zbl0736.16012MR0960570
- Henry F., Some graded identities of the Cayley-Dickson algebra, arxiv.org/abs/1205.5057, (submitted on 22 May 2012).
- Hentzel I., Processing identities by group representation, Computers in Nonassociative Rings and Algebras, (Special Session, 82nd Annual Meeting, Amer. Math. Soc., San Antonio, Tex., 1976), pages 13–40, Academic Press, New York, 1977. MR0463251
- Hentzel I., Applying group representation to nonassociative algebras, Ring Theory (Proc. Conf., Ohio Univ., Athens, Ohio, 1976), 133–141, Lecture Notes in Pure and Appl. Math., 25, Dekker, New York, 1977. Zbl0356.17002MR0435159
- Hentzel I., Juriaans S., Peresi L., 10.1080/00927870601074822, Comm. Algebra 35 (2007), no. 2, 589–595. Zbl1132.20043MR2294618DOI10.1080/00927870601074822
- Hentzel I., Peresi L., 10.1006/jabr.1996.6814, J. Algebra 188 (1997), no. 1, 292–309. Zbl0890.17001MR1432358DOI10.1006/jabr.1996.6814
- Iltyakov A., 10.1007/BF02080333, Algebra Logic 24 (1985), no. 3, 210–228. DOI10.1007/BF02080333
- Iltyakov A., 10.1007/BF00971199, Siberian Math. J. 32 (1991), no. 6, 948–961. Zbl0749.17043DOI10.1007/BF00971199
- Iltyakov A., On finite basis of identities of Lie algebra representations, Nova J. Algebra Geom. 1 (1992), no. 3, 207–259. Zbl0892.17007MR1218354
- Isaev I., 10.1007/BF02071788, Algebra Logic 23 (1984), no. 4, 407–418. Zbl0598.17013MR0781248DOI10.1007/BF02071788
- Jacobson N., 10.2307/1969205, Ann. of Math. (2) 46 (1945), 695–707. MR0014083DOI10.2307/1969205
- Juriaans S., Peresi L., 10.1006/jabr.1998.7675, J. Algebra, 213 (1999), no. 2, 557–566. Zbl0923.17004MR1673469DOI10.1006/jabr.1998.7675
- Kaplansky I., 10.1090/S0002-9904-1948-09049-8, Bull. Amer. Math. Soc. 54 (1948), 575–580. Zbl0032.00701MR0025451DOI10.1090/S0002-9904-1948-09049-8
- Kemer A., 10.1007/BF01978692, Algebra Logic 26 (1987), no. 5, 362–397. MR0985840DOI10.1007/BF01978692
- Kemer A., Ideals of Identities of Associative Algebras, Translations of Mathematical Monographs, 87, American Mathematical Society, Providence, 1991. Zbl0732.16001MR1108620
- Kleinfeld E., 10.2307/1969753, Ann. of Math. 58 (1953), no. 2, 544–547. Zbl0066.28402MR0058581DOI10.2307/1969753
- Knuth D., The Art of Computer Programming, vol. 3: Sorting and Searching, (second edition), Addison-Wesley, Reading, 1998. Zbl1178.68372MR3077154
- Koshlukov P., Algebras with polynomial identities, 15th School of Algebra, Canela, Brazil, 1998. Mat. Contemp. 16 (1999), 137–186. Zbl0976.16019MR1756833
- Leron U., 10.1090/S0002-9947-1973-0332873-3, Trans. Amer. Math. Soc. 183 (1973), 175–202. Zbl0278.16011MR0332873DOI10.1090/S0002-9947-1973-0332873-3
- Malcev A., On algebras defined by identities, Mat. Sbornik N.S. 26(68) (1950), 19–33. MR0033280
- Novelli J., Pak I., Stoyanovskii A., A direct bijective proof of the hook-length formula, Discrete Math. Theor. Comput. Sci. 1 (1997) no. 1, 53–67. Zbl0934.05125MR1605030
- Racine M., 10.1080/00927878508823287, Comm. Algebra 13 (1985), no. 12, 2493–2506. Zbl0579.17014MR0811520DOI10.1080/00927878508823287
- Racine M., 10.1016/0021-8693(88)90294-3, J. Algebra 115 (1988), no. 1, 251–260. Zbl0651.17012MR0937613DOI10.1016/0021-8693(88)90294-3
- Razmyslov Y., Identities of Algebras and Their Representations, Translations of Mathematical Monographs, 138, American Mathematical Society, Providence, 1994. Zbl0827.17001MR1291603
- Regev A., 10.1016/0021-8693(78)90133-3, J. Algebra 51 (1978), no. 1, 25–40. Zbl0374.16009MR0469965DOI10.1016/0021-8693(78)90133-3
- Regev A., On the Codimensions of Matrix Algebras, Algebra --- Some Current Trends, Varna, 1986, 162–172, Lecture Notes in Math., 1352, Springer, Berlin, 1988. Zbl0676.16016MR0981825
- Rutherford D., Substitutional Analysis, Edinburgh, at the University Press, 1948. Zbl0174.31202MR0027272
- Shestakov I., 10.1007/s10469-011-9118-9, Algebra Logic 49 (2011), no. 6, 561–565. Zbl1248.17002MR2829611DOI10.1007/s10469-011-9118-9
- Shestakov I., N. Zhukavets, 10.1016/j.jpaa.2008.07.012, J. Pure Appl. Algebra 213 (2009), no. 4, 479–492. Zbl1241.17033MR2483833DOI10.1016/j.jpaa.2008.07.012
- Specht W., Gesetze in Ringen I., Math. Z. 52 (1950), 557–589. Zbl0032.38901MR0035274
- Vaĭs A., Zel'manov E., Kemer's theorem for finitely generated Jordan algebras, Soviet Math. (Iz. VUZ) 33 (1989), no. 6, 38–47. MR1017777
- van der Waerden B., Algebra, Vol. II, Based in part on lectures by E. Artin and E. Noether, Springer, New York, 1991. MR1080173
- Wagner W., 10.1007/BF01571649, Math. Ann. 113 (1937), no. 1, 528–567. Zbl0015.17002MR1513106DOI10.1007/BF01571649
- Young A., The Collected Papers of Alfred Young (1873–1940), With a foreword by G. de B. Robinson and a biography by H.W. Turnbull, Mathematical Expositions, 21, University of Toronto Press, Toronto, Ont., Buffalo, N.Y., 1977. MR0439548
- Zhevlakov K., Slin'ko A., Shestakov I., Shirshov A., Rings That Are Nearly Associative, Pure and Applied Mathematics, 104, Academic Press, Inc., New York-London, 1982; translated by Harry F. Smith. Zbl0487.17001MR0668355
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.