Pseudo-umbilical manifolds of codimension 2 and of constant mean curvature in an -dimensional elliptic space and generalisations
Czechoslovak Mathematical Journal (1973)
- Volume: 23, Issue: 3, page 404-412
- ISSN: 0011-4642
Access Full Article
topHow to cite
topReferences
top- E. Cartan, La géométrie des espaces de Riemann, Mém. Sc. Math., Fasc. IX, Gauthier-Villars, Paris (1925). (1925)
- B. Y. Chen, On an inequality of mean curvatures of higher degree, Bull. Am. Math. Soc., 77 (1971). (1971) Zbl0206.24103MR0267491
- B. Y. Chen, Minimal hypersurfaces in an -sphere, Proc. Am. Soc., 29 (1971). (1971) Zbl0203.53803MR0285999
- S. S. Chern N. H. Kuiper, Some theorems on the isometric imbedding of compact Riemann manifolds in Euclidean space, Ann. of Math., vol. 56, 3 (1952). (1952) MR0050962
- T. Ôtsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Am. J. of Math., 192 (1970). (192) MR0264565
- R. Rosea F. Borel, Sur les autotransformations infinitésimales équivalentes des variétés minimales à deux dimensions d’un espace elliptique -dimensionnel, C.R. Acad. Sc. Paris, t. 268, p. 399-401 (1969), série A. (1969)
- R. Rosea L. Vanhecke L. Verstraelen, Triade rectangulaire de variétés bidimensionnelles dont l’une est minimale et les deux autres pseudo-ombilicales et de -index , immergées dans un espace elliptique à quatre dimensions, Bull. Soc. Math. Belg. XXIV, 3 (1972). (1972)
- R. Takagi, 10.2748/tmj/1178242686, Tôhoku Math. Journ., 23 (1971). (1971) Zbl0213.48702MR0290311DOI10.2748/tmj/1178242686
- Y. С. Wong, A note on complementary subspaces in a Riemannian space, Bull. Am. Soc., 49 (1943). (1943) Zbl0060.38603MR0008188
- K. Yano, B. Y. Chen, Minimal submanifolds of a higher dimensional sphere, Tensor, 22(1971). (1971) Zbl0218.53073MR0287495