Method of Rothe and nonlinear parabolic boundary value problems of arbitrary order

Jozef Kačur

Czechoslovak Mathematical Journal (1978)

  • Volume: 28, Issue: 4, page 507-524
  • ISSN: 0011-4642

How to cite

top

Kačur, Jozef. "Method of Rothe and nonlinear parabolic boundary value problems of arbitrary order." Czechoslovak Mathematical Journal 28.4 (1978): 507-524. <http://eudml.org/doc/13087>.

@article{Kačur1978,
author = {Kačur, Jozef},
journal = {Czechoslovak Mathematical Journal},
keywords = {Difference Approximation Method; Rothe's Method; Existence; Cauchy Problem; Approximate Solutions; First Initial Value Problem; Nonlinear Parabolic Equation},
language = {eng},
number = {4},
pages = {507-524},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Method of Rothe and nonlinear parabolic boundary value problems of arbitrary order},
url = {http://eudml.org/doc/13087},
volume = {28},
year = {1978},
}

TY - JOUR
AU - Kačur, Jozef
TI - Method of Rothe and nonlinear parabolic boundary value problems of arbitrary order
JO - Czechoslovak Mathematical Journal
PY - 1978
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 28
IS - 4
SP - 507
EP - 524
LA - eng
KW - Difference Approximation Method; Rothe's Method; Existence; Cauchy Problem; Approximate Solutions; First Initial Value Problem; Nonlinear Parabolic Equation
UR - http://eudml.org/doc/13087
ER -

References

top
  1. J. Kačur, On existence of the weak solution for non-linear partial differential equations of elliptic type. I, Comment. Math. Univ. Carolinae, 11, 1 (1970), 137-181. (1970) MR0301357
  2. J. Kačur, On existence of the weak solution for non-linear partial differential equations of elliptic type. II, Comment. Math. Univ. Carolinae, 13, 2 (1972), 211 - 225. (1972) MR0308590
  3. K. Rektorys, On application of direct variational methods to the solution of parabolic boundary value problems of arbitrary order in the space variables, Czech. Math. Journal, 27 (96), (1971), 318-339. (1971) Zbl0217.41601MR0298237
  4. J. Nečas, Les méthodes directes en théorie des équations elliptiques, Prague, 1967. (1967) MR0227584
  5. J. Nečas, Les équations elliptiques non linéaires, L'école d'été, Tchécoslovaquie, 1967. Czech. Math. Journal 2 (1969), 252-274. (1967) MR0252829
  6. E. Rothe, 10.1007/BF01782368, Math. ann. 102 (1930). (1930) DOI10.1007/BF01782368
  7. T. Д. Вентцель, Перваяа краевая задача для квазилинейново уравнения со многими пространственными переменными, Матем. сб. 41 (83), (1957), 499-520. (1957) Zbl0995.90594MR0089346
  8. О. А. Ладыженская, Решение в целом первой краевой задачи для квазилинейных параболических уравнений, ДАН СССР 107, (1965), 636-639. (1965) Zbl1099.01519
  9. А. М. Ильин А. С. Калашников О. А. Олейник, Линейные уравнения второго порядка параболического типа, УМН 17, вьш. 3, (1962), 3-146. (1962) Zbl1226.30001
  10. П. П. Мосолов, Вариационные методы в нестационарных задачах, (Параболический случай.) Изв. АН СССР, 34 (1970), 425-457. (1970) Zbl1170.92319MR0270245
  11. G. J. Мintу, On а ''monotonicity" method for the solution of nonlinear equation in Banach spaces, Proc. N.A.S. USA 50 (1963), 1038--1041. (1963) MR0162159
  12. F. E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer, Math. Soc. 69, N. 6 (1963), 862-874. (1963) Zbl0127.31901MR0156116
  13. F. E. Browder, Strongly nonlinear parabolic boundary value problems, Amer. Journ. of Math. 86, 2 (1964). (1964) 
  14. M. A. Красносельский Я. Б. Рутицкий, Выпуклые функции и пространства Орлича Москва, 1958. 
  15. K. Yosida, Functional analysis, Springer-Verlag, 1965. (1965) Zbl0126.11504

Citations in EuDML Documents

top
  1. Jozef Kačur, Stabilization of solutions of abstract parabolic equations
  2. Jindřich Nečas, Application of Rothe's method to abstract parabolic equations
  3. Dana Lauerová, The Rothe method and time periodic solutions to the Navier-Stokes equations and equations of magnetohydrodynamics
  4. Emmanuel Kwame Essel, Komil Kuliev, Gulchehra Kulieva, Lars-Erik Persson, Homogenization of quasilinear parabolic problems by the method of Rothe and two scale convergence
  5. Milan Pultar, Solutions of abstract hyperbolic equations by Rothe method.
  6. Marián Slodička, Parabolic partial differential equations with memory
  7. Igor Bock, Jozef Kačur, Application of Rothe's method to parabolic variational inequalities

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.