Method of Rothe and nonlinear parabolic boundary value problems of arbitrary order
Czechoslovak Mathematical Journal (1978)
- Volume: 28, Issue: 4, page 507-524
- ISSN: 0011-4642
Access Full Article
topHow to cite
topKačur, Jozef. "Method of Rothe and nonlinear parabolic boundary value problems of arbitrary order." Czechoslovak Mathematical Journal 28.4 (1978): 507-524. <http://eudml.org/doc/13087>.
@article{Kačur1978,
author = {Kačur, Jozef},
journal = {Czechoslovak Mathematical Journal},
keywords = {Difference Approximation Method; Rothe's Method; Existence; Cauchy Problem; Approximate Solutions; First Initial Value Problem; Nonlinear Parabolic Equation},
language = {eng},
number = {4},
pages = {507-524},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Method of Rothe and nonlinear parabolic boundary value problems of arbitrary order},
url = {http://eudml.org/doc/13087},
volume = {28},
year = {1978},
}
TY - JOUR
AU - Kačur, Jozef
TI - Method of Rothe and nonlinear parabolic boundary value problems of arbitrary order
JO - Czechoslovak Mathematical Journal
PY - 1978
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 28
IS - 4
SP - 507
EP - 524
LA - eng
KW - Difference Approximation Method; Rothe's Method; Existence; Cauchy Problem; Approximate Solutions; First Initial Value Problem; Nonlinear Parabolic Equation
UR - http://eudml.org/doc/13087
ER -
References
top- J. Kačur, On existence of the weak solution for non-linear partial differential equations of elliptic type. I, Comment. Math. Univ. Carolinae, 11, 1 (1970), 137-181. (1970) MR0301357
- J. Kačur, On existence of the weak solution for non-linear partial differential equations of elliptic type. II, Comment. Math. Univ. Carolinae, 13, 2 (1972), 211 - 225. (1972) MR0308590
- K. Rektorys, On application of direct variational methods to the solution of parabolic boundary value problems of arbitrary order in the space variables, Czech. Math. Journal, 27 (96), (1971), 318-339. (1971) Zbl0217.41601MR0298237
- J. Nečas, Les méthodes directes en théorie des équations elliptiques, Prague, 1967. (1967) MR0227584
- J. Nečas, Les équations elliptiques non linéaires, L'école d'été, Tchécoslovaquie, 1967. Czech. Math. Journal 2 (1969), 252-274. (1967) MR0252829
- E. Rothe, 10.1007/BF01782368, Math. ann. 102 (1930). (1930) DOI10.1007/BF01782368
- T. Д. Вентцель, Перваяа краевая задача для квазилинейново уравнения со многими пространственными переменными, Матем. сб. 41 (83), (1957), 499-520. (1957) Zbl0995.90594MR0089346
- О. А. Ладыженская, Решение в целом первой краевой задачи для квазилинейных параболических уравнений, ДАН СССР 107, (1965), 636-639. (1965) Zbl1099.01519
- А. М. Ильин А. С. Калашников О. А. Олейник, Линейные уравнения второго порядка параболического типа, УМН 17, вьш. 3, (1962), 3-146. (1962) Zbl1226.30001
- П. П. Мосолов, Вариационные методы в нестационарных задачах, (Параболический случай.) Изв. АН СССР, 34 (1970), 425-457. (1970) Zbl1170.92319MR0270245
- G. J. Мintу, On а ''monotonicity" method for the solution of nonlinear equation in Banach spaces, Proc. N.A.S. USA 50 (1963), 1038--1041. (1963) MR0162159
- F. E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer, Math. Soc. 69, N. 6 (1963), 862-874. (1963) Zbl0127.31901MR0156116
- F. E. Browder, Strongly nonlinear parabolic boundary value problems, Amer. Journ. of Math. 86, 2 (1964). (1964)
- M. A. Красносельский Я. Б. Рутицкий, Выпуклые функции и пространства Орлича Москва, 1958.
- K. Yosida, Functional analysis, Springer-Verlag, 1965. (1965) Zbl0126.11504
Citations in EuDML Documents
top- Jozef Kačur, Stabilization of solutions of abstract parabolic equations
- Jindřich Nečas, Application of Rothe's method to abstract parabolic equations
- Dana Lauerová, The Rothe method and time periodic solutions to the Navier-Stokes equations and equations of magnetohydrodynamics
- Emmanuel Kwame Essel, Komil Kuliev, Gulchehra Kulieva, Lars-Erik Persson, Homogenization of quasilinear parabolic problems by the method of Rothe and two scale convergence
- Milan Pultar, Solutions of abstract hyperbolic equations by Rothe method.
- Marián Slodička, Parabolic partial differential equations with memory
- Igor Bock, Jozef Kačur, Application of Rothe's method to parabolic variational inequalities
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.