Homogenization of quasilinear parabolic problems by the method of Rothe and two scale convergence
Emmanuel Kwame Essel; Komil Kuliev; Gulchehra Kulieva; Lars-Erik Persson
Applications of Mathematics (2010)
- Volume: 55, Issue: 4, page 305-327
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topEssel, Emmanuel Kwame, et al. "Homogenization of quasilinear parabolic problems by the method of Rothe and two scale convergence." Applications of Mathematics 55.4 (2010): 305-327. <http://eudml.org/doc/37850>.
@article{Essel2010,
abstract = {We consider a quasilinear parabolic problem with time dependent coefficients oscillating rapidly in the space variable. The existence and uniqueness results are proved by using Rothe’s method combined with the technique of two-scale convergence. Moreover, we derive a concrete homogenization algorithm for giving a unique and computable approximation of the solution.},
author = {Essel, Emmanuel Kwame, Kuliev, Komil, Kulieva, Gulchehra, Persson, Lars-Erik},
journal = {Applications of Mathematics},
keywords = {parabolic PDEs; Rothe's method; two-scale convergence; homogenization of periodic structures; homogenization algorithm; parabolic PDE; Rothe's method; two-scale convergence; homogenization of periodic structures; homogenization algorithm},
language = {eng},
number = {4},
pages = {305-327},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Homogenization of quasilinear parabolic problems by the method of Rothe and two scale convergence},
url = {http://eudml.org/doc/37850},
volume = {55},
year = {2010},
}
TY - JOUR
AU - Essel, Emmanuel Kwame
AU - Kuliev, Komil
AU - Kulieva, Gulchehra
AU - Persson, Lars-Erik
TI - Homogenization of quasilinear parabolic problems by the method of Rothe and two scale convergence
JO - Applications of Mathematics
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 4
SP - 305
EP - 327
AB - We consider a quasilinear parabolic problem with time dependent coefficients oscillating rapidly in the space variable. The existence and uniqueness results are proved by using Rothe’s method combined with the technique of two-scale convergence. Moreover, we derive a concrete homogenization algorithm for giving a unique and computable approximation of the solution.
LA - eng
KW - parabolic PDEs; Rothe's method; two-scale convergence; homogenization of periodic structures; homogenization algorithm; parabolic PDE; Rothe's method; two-scale convergence; homogenization of periodic structures; homogenization algorithm
UR - http://eudml.org/doc/37850
ER -
References
top- Allaire, G., Two-scale convergence and homogenization of periodic structures. School on Homogenization, ICTP, Trieste, September 6-17, 1993, .
- Allaire, G., 10.1137/0523084, SIAM J. Math. Anal. 23 (1992), 1482-1518. (1992) Zbl0770.35005MR1185639DOI10.1137/0523084
- Almqvist, A., Essel, E. K., Persson, L.-E., Wall, P., 10.1016/j.triboint.2007.02.021, Tribol. Int. 40 (2007), 1344-1350. (2007) DOI10.1016/j.triboint.2007.02.021
- Bensoussan, A., Lions, J.-L., Papanicolaou, G., Asymptotic Analysis for Periodic Structures, North-Holland Amsterdam (1978). (1978) Zbl0404.35001MR0503330
- Fučík, S., Kufner, A., Nonlinear Differential Equations, Elsevier Scientific Publishing Company Amsterdam-Oxford-New York (1980). (1980) MR0558764
- Kačur, J., Method of Rothe and nonlinear parabolic boundary value problems of arbitrary order, Czech. Math. J. 28 (1978), 507-524. (1978) MR0506431
- Kačur, J., Method of Rothe in Evolution Equations, B. G. Teubner Verlagsgesellschaft Leipzig (1985). (1985) MR0834176
- Kuliev, K., Parabolic problems on non-cylindrical domains. The method of Rothe, PhD. Thesis Faculty of Applied Sciences, University of West Bohemia Pilsen (2007). (2007)
- Kuliev, K., Persson, L.-E., 10.1007/s10492-007-0021-6, Appl. Math. 52 (2007), 365-389. (2007) Zbl1164.65463MR2342595DOI10.1007/s10492-007-0021-6
- Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars Paris (1969), French. (1969) Zbl0189.40603MR0259693
- Lions, J.-L., Lukkassen, D., Persson, L.-E., Wall, P., 10.1016/S0764-4442(00)00242-1, C. R. Acad. Sci. Paris 330 (2000), 675-680. (2000) Zbl0953.35041MR1763909DOI10.1016/S0764-4442(00)00242-1
- Lions, J.-L., Lukkassen, D., Persson, L.-E., Wall, P., 10.1142/S0252959901000024, Chin. Ann. Math., Ser. B 22 (2001), 1-12. (2001) Zbl0979.35047MR1823125DOI10.1142/S0252959901000024
- Lukkassen, D., Nguetseng, G., Wall, P., Two-scale convergence, Int. J. Pure Appl. Math. 2 (2002), 35-86. (2002) Zbl1061.35015MR1912819
- Nguetseng, G., 10.1137/0520043, SIAM J. Math. Anal. 20 (1989), 608-623. (1989) Zbl0688.35007MR0990867DOI10.1137/0520043
- Pachpatte, B. G., Inequalities for Differential and Integral Equations, Academic Press San Diego (1998). (1998) Zbl1032.26008MR1487077
- Persson, L.-E., Persson, L., Svanstedt, N., Wyller, J., The Homogenization Method. An Introduction, Studentlitteratur Lund (1993). (1993) Zbl0847.73003MR1250833
- Rektorys, K., The Method of Discretization in Time and Partial Differential Equations, D. Reidel Publishing Company, London, and SNTL, Prague (1982). (1982) Zbl0522.65059MR0689712
- Vala, J., 10.1023/B:APOM.0000024496.35738.28, Appl. Math. 48 (2003), 587-606. (2003) Zbl1099.35047MR2025966DOI10.1023/B:APOM.0000024496.35738.28
- Wall, P., 10.1007/s11401-005-0166-0, Chin. Ann. Math. Ser. B 28 (2007), 363-374. (2007) Zbl1124.35007MR2339440DOI10.1007/s11401-005-0166-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.