Umkehrsätze für Spline-Approximationen

J. Nitsche

Compositio Mathematica (1969)

  • Volume: 21, Issue: 4, page 400-416
  • ISSN: 0010-437X

How to cite

top

Nitsche, J.. "Umkehrsätze für Spline-Approximationen." Compositio Mathematica 21.4 (1969): 400-416. <http://eudml.org/doc/89031>.

@article{Nitsche1969,
author = {Nitsche, J.},
journal = {Compositio Mathematica},
keywords = {approximation and series expansion},
language = {ger},
number = {4},
pages = {400-416},
publisher = {Wolters-Noordhoff Publishing},
title = {Umkehrsätze für Spline-Approximationen},
url = {http://eudml.org/doc/89031},
volume = {21},
year = {1969},
}

TY - JOUR
AU - Nitsche, J.
TI - Umkehrsätze für Spline-Approximationen
JO - Compositio Mathematica
PY - 1969
PB - Wolters-Noordhoff Publishing
VL - 21
IS - 4
SP - 400
EP - 416
LA - ger
KW - approximation and series expansion
UR - http://eudml.org/doc/89031
ER -

References

top
  1. J.H. Ahlberg and E.N. Nilson [1] Convergence properties of the spline fit. SIAM J. Appl. Math.11 (1963), 95-104 Zbl0196.48701MR152788
  2. J.H. Ahlberg, E.N. Nilson And J.L. Walsh [2] Best approximation and convergence properties for higher order spline approximation. J. Math. Mech.14 (1965), 231-244. Zbl0141.06801MR214978
  3. J.H. Ahlberg, E.N. Nilson And J.L. Walsh [3] Convergence properties of generalized splines. Proc. Nat. Acad. Sci. U.S.54 (1965), 344-350. Zbl0136.36301MR223800
  4. J.H. Ahlberg, E.N. Nilson And J.L. Walsh [4] The theory of splines and their applications. Academic Press, New York1967. Zbl0158.15901MR239327
  5. G. Birkhoff [5] Local spline approximation by moments. J. Math. Mech.16 (1967), 987-990. Zbl0148.29204MR208241
  6. G. Birkhoff And C. De Boor [6] Error bounds for spline interpolation. J. Math. Mech.13 (1964), 827-836. Zbl0143.28503MR165294
  7. G. Birkhoff And C. De Boor [7] Piecewise polynomial interpolation and approximation. Proc. of the Symp. on appr. of functions, Michigan 1964, Elsevier Publ. Comp., Amsterdam1965. Zbl0136.04703MR189219
  8. G. Birkhoff, C. De Boor, B. Swartz And B. Wendroff [8] Rayleigh-Ritz approximation by piecewise cubic polynomials. SIAM J. Numer. Anal.3 (1966), 188-203. Zbl0143.38002MR203926
  9. G. Birkhoff, M.H. Schultz, AND R.S. Varga [9] Piecewise hermite interpolation in one and two variables with applications to partial differential equations. Numer. Math.11 (1968), 232-256. Zbl0159.20904MR226817
  10. C. De Boor [10] Best approximation properties of spline functions of odd degree. J. Math. Mech.12 (1963), 747—749. Zbl0116.27601
  11. C. De Boor [11] On local spline approximation by moments. J. of Math. and Mech.17 (1968), 729-735. Zbl0162.08402MR223803
  12. P.G. Ciarlet, M.H. Schultz AND R.S. Varga [12] Numerical methods of high-order accuracy for nonlinear boundary value problems. I. One Dimensional Problem. Numer. Math.9 (1967), 394—430. Zbl0155.20403
  13. S. Karlin AND Z. Ziegler [13] Tschebyscheffian spline functions. SIAM J. Num. Anal.3 (1966), 514-543. Zbl0171.31002MR216206
  14. V.N. Malozemov [14] On polygonal interpolation. Mat. Zametki1 (1967), 537-540. Zbl0188.37002MR214971
  15. M. Marsden, AND I.J. Schoenberg [15] On variation diminishing spline approximation methods. Mathematica (Cluj) 8 (31) (1966), 61-82. Zbl0171.31001MR213791
  16. A. Meir AND A. Sharma [16] Simultaneous approximation of a function and its derivatives. - SIAM J. Numer. Anal.3 (1966), 553-563. Zbl0148.29301MR216209
  17. H. Rutishauser [17] Bemerkungen zur glatten Interpolation. ZAMP11 (1960), 508-513. Zbl0161.12902MR143324
  18. I.J. Schoenberg [18] Spline interpolation and the higher derivatives. Proc. Nat. Acad. Sci. USA51 (1964), 24-28. Zbl0136.36201MR160064
  19. M.H. Schultz AND R.S. Varga [19] L-Splines. Numer. Math.10 (1967), 345-369. Zbl0183.44402MR225068
  20. A. Sharma AND A. Meir [20] Degree of approximation of spline interpolation. J. Math. Mech.15 (1966), 759-767. Zbl0158.30702MR194800
  21. Ju N. Subbotin [21] Piecewise-polynomial interpolation (russ.). Mat. Zametki1 (1967), 63-70. Zbl0159.08402MR213788
  22. R.S. Varga [22] Hermite interpolation-type Ritz methods for two-point boundary value problems. Numerical Solution of Partial Diff. Equations (Proc. Sympos. Univ. Maryland, 1965), 365—373. Academic Press, New York, 1966. Zbl0161.35701
  23. G.G. Lorentz [23] Approximation of functions. Holt, Rinehart and Winston, New York-Chicago -San Francisco-Toronto- London1966. Zbl0153.38901MR213785
  24. S.G. Mihlin [24] Über die Ritzsche Methode. Doklady Akademia Nauk SSSR, 106 (1956), 391-394 (russ.). Zbl0070.12106
  25. S.G. Mihlin [25] Variationsmethoden der mathematischen Physik. Akademie-Verlag, Berlin, 1962. Zbl0098.36909MR141248
  26. S.G. Mihlin [26] Numerische Realisierung von Variationsmethoden. Nauka, Moskau1966 (russ. ). Zbl0136.13002
  27. I.P. Natanson [27] Konstruktive Funktionentheorie. Akademie-Verlag, Berlin, 1955. Zbl0065.29502MR69915
  28. J. Nitsche [28] Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens. Numer. Math.11 (1968), 346-348. Zbl0175.45801MR233502
  29. J. Nitsche [29] Verfahren von Ritz und Spline-Interpolation bei Sturm-Liouville-Randwertproblemen. Num. Math.13 (1969), 260-265. Zbl0181.18204MR278532
  30. J. Nitsche [30] Sätze vom Jackson-Bernstein-Typ fur die Approximation mit Spline-Funktionen. Math. Zeitschr.109 (1969), 97—106. Zbl0174.35502
  31. A. v. Plehwe [31] Eine Bemerkung zu einer Arbeit von A. V. Dzhishkariani. ZAMM48 (1968), 422—423. Zbl0175.45802
  32. N.I. Polskii [32] Über die Konvergenz gewisser Näherungsverfahren der Analysis. Ukr. Mat. J., Kiew7 (1955), 56—70 (Russ.). Zbl0064.12003
  33. N.I. Polskii [33] Projective methods in applied mathematics. Soviet Math. Doklady3 (1962), 488-492. Zbl0209.47301MR145644
  34. A.F. Timan [34] Theory of approximation of functions of a real variable. Fizmatgiz, Moskau1960 (engl. Übersetzung Pergamon Press, Oxford- London-New York-Paris1963). Zbl0117.29001MR117478

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.