Backward Differentiation Type Formulas for Volterra Integral Equations of the Second Kind.

P.J. van der Houwen; H.J.J. te Riele

Numerische Mathematik (1981)

  • Volume: 37, page 205-218
  • ISSN: 0029-599X; 0945-3245/e

How to cite

top

Houwen, P.J. van der, and Riele, H.J.J. te. "Backward Differentiation Type Formulas for Volterra Integral Equations of the Second Kind.." Numerische Mathematik 37 (1981): 205-218. <http://eudml.org/doc/132727>.

@article{Houwen1981,
author = {Houwen, P.J. van der, Riele, H.J.J. te},
journal = {Numerische Mathematik},
keywords = {Volterra integral equations of the second kind; numerical integration formulas; backward differentiation formulas; stability; convolution kernels; block-implicit Runge-Kutta scheme; stiff Volterra integral equations},
pages = {205-218},
title = {Backward Differentiation Type Formulas for Volterra Integral Equations of the Second Kind.},
url = {http://eudml.org/doc/132727},
volume = {37},
year = {1981},
}

TY - JOUR
AU - Houwen, P.J. van der
AU - Riele, H.J.J. te
TI - Backward Differentiation Type Formulas for Volterra Integral Equations of the Second Kind.
JO - Numerische Mathematik
PY - 1981
VL - 37
SP - 205
EP - 218
KW - Volterra integral equations of the second kind; numerical integration formulas; backward differentiation formulas; stability; convolution kernels; block-implicit Runge-Kutta scheme; stiff Volterra integral equations
UR - http://eudml.org/doc/132727
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.