The Laplacian permanental polynomial for trees

Russell Merris

Czechoslovak Mathematical Journal (1982)

  • Volume: 32, Issue: 3, page 397-403
  • ISSN: 0011-4642

How to cite

top

Merris, Russell. "The Laplacian permanental polynomial for trees." Czechoslovak Mathematical Journal 32.3 (1982): 397-403. <http://eudml.org/doc/13325>.

@article{Merris1982,
author = {Merris, Russell},
journal = {Czechoslovak Mathematical Journal},
keywords = {permanental; adjacency matrix; degrees; star},
language = {eng},
number = {3},
pages = {397-403},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Laplacian permanental polynomial for trees},
url = {http://eudml.org/doc/13325},
volume = {32},
year = {1982},
}

TY - JOUR
AU - Merris, Russell
TI - The Laplacian permanental polynomial for trees
JO - Czechoslovak Mathematical Journal
PY - 1982
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 32
IS - 3
SP - 397
EP - 403
LA - eng
KW - permanental; adjacency matrix; degrees; star
UR - http://eudml.org/doc/13325
ER -

References

top
  1. W. N. Anderson, Jr., T. D. Morley, Eigenvalues of the Laplacian of a graph, TR 71-45, Univ. of Md., College Park, MD. Zbl0594.05046
  2. N. Biggs, Algebraic Graph Theory, Cambridge Univ. Press, 1974. (1974) Zbl0284.05101MR0347649
  3. D. M. Cvetkovič M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New York, 1980. (1980) MR0572262
  4. A. K. Keľmans, V. M. Chelnokov, 10.1016/0095-8956(74)90065-3, J. Combinatorial Theory (B) 16 (1974), 197-214. Erratum, Ibid. 24 (1978), 375. (1974) MR0345867DOI10.1016/0095-8956(74)90065-3
  5. M. Fiedler, Algebraic connectivity of graphs, Czech. Math. J. 23 (98) (1973), 298 - 305. (1973) Zbl0265.05119MR0318007
  6. M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Prindle, Weber and Schmidt, Boston, 1964. (1964) Zbl0126.02404MR0162808
  7. R. Merris K. R. Rebman, W. Watkins, 10.1016/0024-3795(81)90026-4, Letters in Linear Algebra, Linear Algebra Appl. 38 (1981), 273-288. (1981) MR0636042DOI10.1016/0024-3795(81)90026-4
  8. H. Poincaré, Second complément à l'analysis situs, Proc. London Math. Soc. 32 (1901), 277-308. (1901) 
  9. I. Schur, 10.1007/BF01203611, Math. Z. 1 (1918), 184-207. (1918) MR1544291DOI10.1007/BF01203611
  10. A. J. Schwenk, Almost all trees are cospectral, New Directions in Graph Theory, (edited by F. Harary), Academic Press, 1973. (1973) MR0384582

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.