A domain decomposition method for solving a Helmholtz-like problem in elasticity based on the Wilson nonconforming element
Lynn Schreyer Bennethum; Xiaobing Feng
- Volume: 31, Issue: 1, page 1-25
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBennethum, Lynn Schreyer, and Feng, Xiaobing. "A domain decomposition method for solving a Helmholtz-like problem in elasticity based on the Wilson nonconforming element." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.1 (1997): 1-25. <http://eudml.org/doc/193830>.
@article{Bennethum1997,
author = {Bennethum, Lynn Schreyer, Feng, Xiaobing},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {parallelizable iterative procedure; sequence of elliptic systems; first-order absorbing boundary conditions; nearly elastic solid; frequency domain; convergence; hybridization},
language = {eng},
number = {1},
pages = {1-25},
publisher = {Dunod},
title = {A domain decomposition method for solving a Helmholtz-like problem in elasticity based on the Wilson nonconforming element},
url = {http://eudml.org/doc/193830},
volume = {31},
year = {1997},
}
TY - JOUR
AU - Bennethum, Lynn Schreyer
AU - Feng, Xiaobing
TI - A domain decomposition method for solving a Helmholtz-like problem in elasticity based on the Wilson nonconforming element
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 1
SP - 1
EP - 25
LA - eng
KW - parallelizable iterative procedure; sequence of elliptic systems; first-order absorbing boundary conditions; nearly elastic solid; frequency domain; convergence; hybridization
UR - http://eudml.org/doc/193830
ER -
References
top- [1] R. A. ADAMS, 1975, Sobolev Spaces, Academic Press, New York. Zbl0314.46030MR450957
- [2] L. BERS, F. JOHN and M. SCHECHTER, 1964, Partial Differential Equations, John Wiley & Sons, New York. Zbl0126.00207MR162045
- [3] P. G. CIARLET, 1978, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam. Zbl0383.65058MR520174
- [4] B. E. J. DAHLBERG, C. E. KENIG and G. C. VERCHOTA, 1988, Boundary value problems for the systems of elastostatics in Lipschitz domains, Duke Math. J., 57, pp. 795-818. Zbl0699.35073MR975122
- [5] R. DAUTRAY and J. L. LIONS, 1990, Mathematical Analysis and Numencal Methods for Science and Technology, I, Springer-Verlag, New York. Zbl0683.35001
- [6] B. DESPRÉS, 1991, Méthodes de décomposition de domaines pour les problèmes de propagation d'ondes en régime harmonique, Ph. D. Thesis, Université Paris IX Dauphine, UER Mathématiques de la Decision. Zbl0849.65085
- [7] B. DESPRÉS, P. JOLY and J. E. ROBERTS, A domain decomposition method for the harmonie Maxwell equations, Itérative Methods in Linear Algebra, Elsevier Science Publishers B. V. (North-Holland), Amsterdam, pp. 475-484, R. Beauwens and P. de Groen, eds. Zbl0785.65117MR1159757
- [8] J. DOUGLAS Jr, P. J. S. PAES LEME, J. E. ROBERTS and J. WANG, 1993, A parallel iterative procedure applicable to the approximate solution of second order partial differential e-quations by mixed finite element methods, Numer. Math., 65, pp.95-108. Zbl0813.65122MR1217441
- [9] J. DOUGLAS Jr and J. E. ROBERTS, 1982, Mixed finite element methods for second order elliptic problems, Matemática Aplicada e Computacional, 1, pp. 91-103. Zbl0482.65057MR667620
- [10] G. DUVAUT and J. L. LIONS, 1976, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin. Zbl0331.35002MR521262
- [11] X. FENG, 1992, On miscible displacement in porous media and absorbing boundary conditions for electromagnetic wave propagation and on elastic and nearly elastic waves in the frequency domam, Ph. D. Thesis, Purdue University, 1992.
- [12] X. FENG, A mixed finite element domam decomposition method for nearly elastic waves in the frequency domain (submitted).
- [13] X. FENG, A domain decomposition method for convection-dominated convection-diffusion equations, preprint.
- [14] P. GRISVARD, 1992, Singularities in Boundary Value Problems, Research Notes in Applied Mathematics, Vol. 22, Springer-Verlag and Masson. Zbl0766.35001MR1173209
- [15] F. JOHN, 1982, Partial Differential Equations, Fourth Edition, Springer-Verlag, New York. MR831655
- [16] C. E. KENIG, 1994, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS Regional Conference Series in Mathematics, No. 83, American Mathematical Society. Zbl0812.35001MR1282720
- [17] S. KIM, 1994, A parallelizable iterative procedure for the Helmholtz problem, Appl. Numer. Math., 14, pp. 435-449. Zbl0805.65100MR1285471
- [18] V. D. KUPRADZE, 1965, Potential Methods in the Theory of Elasticity, Israel Program for Scientiflc Translations, Jerusalem. Zbl0188.56901MR223128
- [19] P. LESAINT, 1976, On the convergence of Wilson's nonconforing element for solving the elastic problem, Comput. Methods Appl. Mech. Engrg, 7, pp. 1-16. Zbl0345.65058MR455479
- [20] J. L LIONS, 1955, Contributions à un problème de M. M. Picone, Ann. Mat. Pura e Appl., 41, pp. 201-215. Zbl0075.10103MR89978
- [21] J. L. LIONS and E. MAGENES, 1972, Nonhomogeneous Boundary Value Problems and Applications, Vol I, Springer-Verlag, New York. Zbl0223.35039
- [22] P. L. LIONS, 1988, 1988, On the Schwartz alternatmg method I, III, First and Third International Symposium on Domain Decomposition Method for Partial Differential Equations, SIAM, Philadelphia. MR972510
- [23] L. D. MARINI and A. QUARTERONI, 1989, A relaxation procedure for domain decomposition methods using finite elements, Numer. Math., 55, pp. 575-598. Zbl0661.65111MR998911
- [24] J. A. NITSCHE, 1981, On Korn's second inequality, R.A.I.R.O Anal. Numér., 15, pp. 237-248. Zbl0467.35019MR631678
- [25] C. L. RAVAZZOLI, J. DOUGLAS Jr, J. E. SANTOS and D. SHEEN, 1992, On the solution of the equations of motion for nearly elastic solids in the frequency domain, Proceedings of the IV Reunion de Trabajo en Procesamiento de la Información y Control, Centro de Cálculo Cientifico, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina, November 1991, or Technical Report #164, Center for Applied Mathematics, Purdue University.
- [26] A. SCHATZ, 1974, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp, 28, pp. 959-962. Zbl0321.65059MR373326
- [27] J.-M. THOMAS, 1977, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thèse d'État, Université Pierre et Marie Curie, Paris.
- [28] J. E. WHITE, 1965, Seismic Waves, Radiation, Transmission and Attenuation, McGraw-Hill.
- [29] E. L. WILSON, R. L. TAYLOR, W. P. DOHERTY and J. GHABOUSSI, 1971, Incompatible displacement models, Symposium on Numerical and Computer Methods in Structural Engineering, O.N.R., University of Illinois.
- [30] J. XU, 1992, Iterative methods by space decomposition and subspace correction, SIAM Review, 34, pp, 581-613. Zbl0788.65037MR1193013
- [31] K. YOSIDA, 1980, Functional Analysis, Springer-Verlag, Berlin-New York. Zbl0435.46002MR617913
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.