Application of Rothe's method to perturbed linear hyperbolic equations and variational inequalities

Jozef Kačur

Czechoslovak Mathematical Journal (1984)

  • Volume: 34, Issue: 1, page 92-106
  • ISSN: 0011-4642

How to cite

top

Kačur, Jozef. "Application of Rothe's method to perturbed linear hyperbolic equations and variational inequalities." Czechoslovak Mathematical Journal 34.1 (1984): 92-106. <http://eudml.org/doc/13429>.

@article{Kačur1984,
author = {Kačur, Jozef},
journal = {Czechoslovak Mathematical Journal},
keywords = {existence; uniqueness; regularity; Tothe's method; perturbed linear hyperbolic equations; direct variational methods; hyperbolic inequalities},
language = {eng},
number = {1},
pages = {92-106},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Application of Rothe's method to perturbed linear hyperbolic equations and variational inequalities},
url = {http://eudml.org/doc/13429},
volume = {34},
year = {1984},
}

TY - JOUR
AU - Kačur, Jozef
TI - Application of Rothe's method to perturbed linear hyperbolic equations and variational inequalities
JO - Czechoslovak Mathematical Journal
PY - 1984
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 34
IS - 1
SP - 92
EP - 106
LA - eng
KW - existence; uniqueness; regularity; Tothe's method; perturbed linear hyperbolic equations; direct variational methods; hyperbolic inequalities
UR - http://eudml.org/doc/13429
ER -

References

top
  1. M. Pultar, Solution of evolution equations of hyperbolic type by the method of Rothe, To appear. 
  2. K. Rektorys, On application of direct variational methods to the solution of parabolic boundary value problems of arbitrary order in the space variables, Czech. Math. J., 21 (96) 1971, 318-339. (1971) Zbl0217.41601MR0298237
  3. J. Kačur A. Wawruch, On an approximate solution for quasilinear parabolic equations, Czech. Math. J., 27 (102) 1977, 220-241. (1977) MR0605665
  4. J. Nečas, Application of Rothe's method to abstract parabolic equations, Czech. Math. J., 24 (99), 1974, N-3, 496-500. (1974) Zbl0311.35059MR0348571
  5. I. Bock J. Kačur, Application of Rothe's method to parabolic variational inequalities, Math. Slovaca 31, 1981, N-4, 429-436. (1981) MR0637970
  6. Bubeník F., To the problems of solution of hyperbolic problems by Rothe's method, (Czech), Praha 1980, Thesis (unpublished). (1980) 
  7. J. Streiblová, Solution of the hyperbolic problem by Rothe's method, (Czech), Praha 1978, Thesis (unpublished). (1978) 
  8. J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. (1967) MR0227584
  9. H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans espaces de Hilbert, North-Holand, Amsterdam, 1973. (1973) MR0348562
  10. Y. Komura, 10.2969/jmsj/01940493, J. Math. Soc. Japan, 19 (1967), 493-507. (1967) MR0216342DOI10.2969/jmsj/01940493
  11. A. Kufner О. John S. Fučik, Function Spaces, Academia, Prague 1977. (1977) 
  12. J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod-Gauthier-Villars, Paris 1969. (1969) Zbl0189.40603MR0259693
  13. G. Duvaut J. L. Lions, Inequalities in Mechanics and Physics, Springer Verlag, 1976. (1976) MR0521262

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.