The Rothe method for the McKendrick-von Foerster equation
Henryk Leszczyński; Piotr Zwierkowski
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 3, page 589-602
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLeszczyński, Henryk, and Zwierkowski, Piotr. "The Rothe method for the McKendrick-von Foerster equation." Czechoslovak Mathematical Journal 63.3 (2013): 589-602. <http://eudml.org/doc/260719>.
@article{Leszczyński2013,
abstract = {We present the Rothe method for the McKendrick-von Foerster equation with initial and boundary conditions. This method is well known as an abstract Euler scheme in extensive literature, e.g. K. Rektorys, The Method of Discretization in Time and Partial Differential Equations, Reidel, Dordrecht, 1982. Various Banach spaces are exploited, the most popular being the space of bounded and continuous functions. We prove the boundedness of approximate solutions and stability of the Rothe method in $L^\infty $ and $L^1$ norms. Proofs of these results are based on comparison inequalities. Our theory is illustrated by numerical experiments. Our research is motivated by certain models of mathematical biology.},
author = {Leszczyński, Henryk, Zwierkowski, Piotr},
journal = {Czechoslovak Mathematical Journal},
keywords = {Rothe method; stability; comparison; Rothe method; stability; comparison; semidiscretization; McKendrick-von Foerster partial differential equation; initial-boundary-value problem; convergence; consistency; numerical example},
language = {eng},
number = {3},
pages = {589-602},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Rothe method for the McKendrick-von Foerster equation},
url = {http://eudml.org/doc/260719},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Leszczyński, Henryk
AU - Zwierkowski, Piotr
TI - The Rothe method for the McKendrick-von Foerster equation
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 3
SP - 589
EP - 602
AB - We present the Rothe method for the McKendrick-von Foerster equation with initial and boundary conditions. This method is well known as an abstract Euler scheme in extensive literature, e.g. K. Rektorys, The Method of Discretization in Time and Partial Differential Equations, Reidel, Dordrecht, 1982. Various Banach spaces are exploited, the most popular being the space of bounded and continuous functions. We prove the boundedness of approximate solutions and stability of the Rothe method in $L^\infty $ and $L^1$ norms. Proofs of these results are based on comparison inequalities. Our theory is illustrated by numerical experiments. Our research is motivated by certain models of mathematical biology.
LA - eng
KW - Rothe method; stability; comparison; Rothe method; stability; comparison; semidiscretization; McKendrick-von Foerster partial differential equation; initial-boundary-value problem; convergence; consistency; numerical example
UR - http://eudml.org/doc/260719
ER -
References
top- Abia, L. M., López-Marcos, J. C., 10.1016/S0025-5564(98)10080-9, Math. Biosci. 157 (1999), 147-167. (1999) MR1686472DOI10.1016/S0025-5564(98)10080-9
- Jr., J. Douglas, Milner, F. A., 10.1007/BF02679109, Calcolo 24 (1987), 247-254. (1987) Zbl0658.65145MR1004520DOI10.1007/BF02679109
- Feichtinger, G., Prskawetz, A., Veliov, V. M., 10.1016/j.tpb.2003.07.006, Theor. Popul. Biol. 65 (2004), 373-387. (2004) Zbl1110.92035DOI10.1016/j.tpb.2003.07.006
- Gurtin, M. E., MacCamy, R. C., 10.1007/BF00250793, Arch. Ration. Mech. Anal. 54 (1974), 281-300. (1974) MR0354068DOI10.1007/BF00250793
- Hoppensteadt, F., Mathematical Theories of Populations: Demographics, Genetics, and Epidemics. CBMS-NSF Regional Conference Series in Applied Mathematics 20, SIAM Philadelphia (1975). (1975) MR0526771
- Iannelli, M., Mathematical Theory of Age-Structured Population Dynamics. Applied Mathematics Monographs 7, Giardini Editori e Stampatori Pisa (1994). (1994)
- Jossey, J., Hirani, A. N., Equivalence theorems in numerical analysis: integration, differentiation and interpolation, http://arxiv.org/abs/0709.4046 (2007). (2007)
- Kačur, J., Application of Rothe's method to perturbed linear hyperbolic equations and variational inequalities, Czech. Math. J. 34 (1984), 92-106. (1984) Zbl0554.35086MR0731982
- Kikuchi, N., Kačur, J., 10.1023/B:APOM.0000024481.01947.da, Appl. Math., Praha 48 (2003), 353-365. (2003) Zbl1099.65079MR2008889DOI10.1023/B:APOM.0000024481.01947.da
- Kostova, T. V., 10.1016/0898-1221(88)90270-2, Comput. Math. Appl. 15 (1988), 427-436. (1988) Zbl0651.65099MR0953556DOI10.1016/0898-1221(88)90270-2
- Lax, P. D., Richtmyer, R. D., 10.1002/cpa.3160090206, Commun. Pure Appl. Math. 9 (1956), 267-293. (1956) Zbl0072.08903MR0079204DOI10.1002/cpa.3160090206
- Manfredi, P., Williams, J. R., 10.1016/j.mbs.2004.11.006, Math. Biosci. 192 (2004), 153-175. (2004) Zbl1073.92046MR2120645DOI10.1016/j.mbs.2004.11.006
- Milner, F. A., 10.1002/num.1690040406, Numer. Methods Partial Differ. Equations 4 (1988), 329-345. (1988) Zbl0661.65149MR1012488DOI10.1002/num.1690040406
- Murray, J. D., Mathematical Biology. Vol. 1: An introduction. 3rd ed. Interdisciplinary Applied Mathematics 17, Springer New York (2002). (2002) MR1908418
- Ostermann, A., Thalhammer, M., 10.1016/S0168-9274(01)00161-1, Appl. Numer. Math. 42 (2002), 367-380. (2002) Zbl1004.65093MR1921348DOI10.1016/S0168-9274(01)00161-1
- Rektorys, K., The Method of Discretization in Time and Partial Differential Equations, Mathematics and Its Applications (East European Series) vol. 4 Reidel, Dordrecht (1982). (1982) Zbl0522.65059MR0689712
- Sanz-Serna, J. M., Palencia, C., 10.1090/S0025-5718-1985-0790648-7, Math. Comput. 45 (1985), 143-152. (1985) Zbl0599.65034MR0790648DOI10.1090/S0025-5718-1985-0790648-7
- Slodička, M., Semigroup formulation of Rothe's method: application to parabolic problems, Commentat. Math. Univ. Carol. 33 (1992), 245-260. (1992) Zbl0756.65121MR1189655
- Spigler, R., Vianello, M., 10.1080/01630569508816645, Numer. Funct. Anal. Optimization 16 (1995), 785-803. (1995) Zbl0827.65061MR1341112DOI10.1080/01630569508816645
- Tchuenche, J. M., Convergence of an age-physiology dependent population model, Sci., Ser. A, Math. Sci. (N.S.) 15 (2007), 23-30. (2007) Zbl1138.92366MR2367910
- Walter, W., Ordinary Differential Equations Transl. from the German by Russell Thompson. Graduate Texts in Mathematics. Readings in Mathematics 182, Springer New York (1998). (1998) MR1629775
- al., J. A. J. Metz et, The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics 68, Springer Berlin (1986). (1986) MR0860959
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.