A theory on non-developable generalized ruled surfaces in the elliptic space E m

Charles Thas

Czechoslovak Mathematical Journal (1984)

  • Volume: 34, Issue: 4, page 609-618
  • ISSN: 0011-4642

How to cite

top

Thas, Charles. "A theory on non-developable generalized ruled surfaces in the elliptic space $E^m$." Czechoslovak Mathematical Journal 34.4 (1984): 609-618. <http://eudml.org/doc/13485>.

@article{Thas1984,
author = {Thas, Charles},
journal = {Czechoslovak Mathematical Journal},
keywords = {elliptic space; generalized ruled surface; non-developable; striction},
language = {eng},
number = {4},
pages = {609-618},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A theory on non-developable generalized ruled surfaces in the elliptic space $E^m$},
url = {http://eudml.org/doc/13485},
volume = {34},
year = {1984},
}

TY - JOUR
AU - Thas, Charles
TI - A theory on non-developable generalized ruled surfaces in the elliptic space $E^m$
JO - Czechoslovak Mathematical Journal
PY - 1984
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 34
IS - 4
SP - 609
EP - 618
LA - eng
KW - elliptic space; generalized ruled surface; non-developable; striction
UR - http://eudml.org/doc/13485
ER -

References

top
  1. Chen B. Y., Geometry of submanifolds, Marcel Dekker, New York 1973. (1973) Zbl0262.53036MR0353212
  2. Obata M., The Gauss map of a minimal immersion, Journal of differential geometry, vol. 2, nr. 2, 217-223 (1968). (1968) MR0234388
  3. Spivak M., A comprehensive introduction to differential geometry, (vol.4). Publish or perish inc., Boston (1970). (1970) Zbl0202.52201
  4. Thas C., Een (lokale) studie van de (m + 1)-dimensionale variëteiten van de n-dimensionale euklidische ruimte R n (n ≥ 2m + 1 en m ≥ 1), beschreven door een ééndimensionale familie van m-dimensionale linéaire ruimten, (English summary). Meded. Kon. Acad. Wet., Lett., Sch. K. van België, jaargang XXXVI, nr. 4, 83 pp. (1974). (1974) 
  5. Thas C., A Gauss map on hypersurfaces of submanifolds in euclidean spaces, J. Korean Math. Soc., vol. 76, 1, 17-27, (1979). (1979) Zbl0433.53014MR0543079
  6. Thas C., [unknown], Soochow J. Math., vol. 4, pp. 29-38 (1978). (1978) MR0530536
  7. Thas C., On submanifolds of a Riemannian manifold M containing a hypersurface which is totally geodesic in M and applications, Resultate der Mathematik, Vol, 5, pp. 1-10, (1983). (1983) Zbl0531.53001MR0732912

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.