A contractive property in finite state Markov chains

Petr Kratochvíl; Antonín Lešanovský

Czechoslovak Mathematical Journal (1985)

  • Volume: 35, Issue: 3, page 491-509
  • ISSN: 0011-4642

How to cite

top

Kratochvíl, Petr, and Lešanovský, Antonín. "A contractive property in finite state Markov chains." Czechoslovak Mathematical Journal 35.3 (1985): 491-509. <http://eudml.org/doc/13531>.

@article{Kratochvíl1985,
author = {Kratochvíl, Petr, Lešanovský, Antonín},
journal = {Czechoslovak Mathematical Journal},
keywords = {finite state Markov chain; contractive property; rate of convergence},
language = {eng},
number = {3},
pages = {491-509},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A contractive property in finite state Markov chains},
url = {http://eudml.org/doc/13531},
volume = {35},
year = {1985},
}

TY - JOUR
AU - Kratochvíl, Petr
AU - Lešanovský, Antonín
TI - A contractive property in finite state Markov chains
JO - Czechoslovak Mathematical Journal
PY - 1985
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 35
IS - 3
SP - 491
EP - 509
LA - eng
KW - finite state Markov chain; contractive property; rate of convergence
UR - http://eudml.org/doc/13531
ER -

References

top
  1. F. L. Bauer E. Deutsch J. Stoer, Abschätzungen für die Eigenwerte positiver linearen Operatoren, Linear Algebra and Applications, 2 (1969), 275-331. (1969) MR0245587
  2. G Birkhoff, Lattice Theory, 3rd ed.. Amer. Math. Soc. Colloq. Publ. Vol. XXV, Providence, R. I.(1967). (1967) Zbl0153.02501MR0227053
  3. K. L. Chung, Markov chains with stationary transition probabilities, Springer-Verlag, Berlin-Göttingen-Heidelberg (1960). (1960) Zbl0092.34304MR0116388
  4. R. L. Dobrushin, Central limit theorem for non-stationary Markov chains I, II, Theory Prob. Apl. 1 (1956), 63-80, 329-383 (EngHsh translation). (1956) Zbl0093.15001MR0086436
  5. J. Hajnal, 10.1017/S0305004100033399, Proc. Camb. Phil. Soc. 54(1958), 233-246. (1958) Zbl0082.34501MR0096306DOI10.1017/S0305004100033399
  6. S. Karlin, A first course in stochastic processes, Academic Press, New York and London (1968). (1968) Zbl0177.21102MR0208657
  7. J. G. Kemeny J. L. Snell, Finite Markov chains, D. van Nostrand Соrр., New York (1960). (1960) MR0115196
  8. D. G. Kendall, Unitary dilatations of Markov transition operators, and the corresponding integral representations for transition-probability matrices, In: Probability and Statistics, The Harald Cramer Volume, U. Grenander (ed.), Stockholm Almqvist and Wiksell (New York: John Wiley and Sons) (1959). (1959) MR0116389
  9. D. G. Kendall, Geometric ergodicity and the theory of queues, In: Mathematical methods in the social sciences, K. J. Arrow, S. Karlin, P. Suppes (ed.), Stanford, California (1960). (1960) MR0124088
  10. P. Kratochvíl, On convergence of homogeneous Markov chains, Apl. mat. 28 (1983), 2, 116-119. (1983) MR0695185
  11. A. Paz, Introduction to Probabilistic Automata, Academic Press, New York (1971). (1971) Zbl0234.94055MR0289222
  12. T. A. Сарымсаков, Основы теории процессов Наркова, Государственное издателство технико-теоретической литературы, Москва (1954). (1954) Zbl0995.90535
  13. Т. А. Sarymsakov, On the theory of inhomogeneous Markov chains, (in Russian). Dokl, Akad. Nauk Uzbek. S.S.R. 8 (1956), 3-7. (1956) 
  14. E. Seneta, 10.1017/S0305004100077276, Proc. Camb. Phil. Soc. 74 (1973), 507-513. (1973) Zbl0271.60074MR0331522DOI10.1017/S0305004100077276
  15. E. Seneta, 10.1017/S000186780003281X, Adv. Appl. Prob. 11 (1979), 576-590. (1979) Zbl0406.60060MR0533060DOI10.1017/S000186780003281X
  16. D. Vere-Jones, 10.1093/qmath/13.1.7, Quart. J. Math. Oxford (2), 13 (1962), 7-28. (1962) Zbl0104.11805MR0141160DOI10.1093/qmath/13.1.7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.