Coefficients of ergodicity generated by non-symmetrical vector norms
Czechoslovak Mathematical Journal (1990)
- Volume: 40, Issue: 2, page 284-294
- ISSN: 0011-4642
Access Full Article
topHow to cite
topLešanovský, Antonín. "Coefficients of ergodicity generated by non-symmetrical vector norms." Czechoslovak Mathematical Journal 40.2 (1990): 284-294. <http://eudml.org/doc/13850>.
@article{Lešanovský1990,
author = {Lešanovský, Antonín},
journal = {Czechoslovak Mathematical Journal},
keywords = {coefficients of ergodicity of stochastic matrices},
language = {eng},
number = {2},
pages = {284-294},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Coefficients of ergodicity generated by non-symmetrical vector norms},
url = {http://eudml.org/doc/13850},
volume = {40},
year = {1990},
}
TY - JOUR
AU - Lešanovský, Antonín
TI - Coefficients of ergodicity generated by non-symmetrical vector norms
JO - Czechoslovak Mathematical Journal
PY - 1990
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 40
IS - 2
SP - 284
EP - 294
LA - eng
KW - coefficients of ergodicity of stochastic matrices
UR - http://eudml.org/doc/13850
ER -
References
top- F. L. Bauer E. Deutsch J. Stoer, Abschätzungen für die Eigenwerte positiver linearen Operatoren, Linear Algebra and Applicns. 2 (1969), 275-301. (1969) MR0245587
- G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publicns., vol. XXV, Providence, R. I.-3rd edition (1967). (1967) Zbl0153.02501MR0227053
- R. L. Dobrushin, Central limit theorem for non-stationary Markov chains I, II, Theory Prob. Appl. 1 (1956), 63-80, 329-383 (English translation). (1956) Zbl0093.15001MR0086436
- J. Hajnal, Weak ergodicity in non-homogeneous Markov chains, Proc. Camb. Phil. Soc. 54(1958),233-246. (1958) Zbl0082.34501MR0096306
- R. A. Hom, Ch. A. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne and Sydney (1985). (1985) MR0832183
- S. Karlin, A First Course in Stochastic Processes, Academic Press, New York and London (1968). (1968) Zbl0177.21102MR0208657
- D. G. Kendall, Geometric ergodicity and the theory of queues, In: Matehmatical Methods in the Social Sciences, K. J. Arrow, S. Karlin, P. Suppes (eds.), Stanford, California (1960). (1960) MR0124088
- P. Kratochvíl A. Lešanovský, A contractive property in finite state Markov chains, Czechoslovak Math. J. 35 (110) (1985), 491-509. (1985) MR0803042
- A. Paz, Introduction to Probabilistic Automata, Academic Press, New York (1971). (1971) Zbl0234.94055MR0289222
- A. Rhodius, 10.1016/0304-4149(88)90033-6, Stochastic Processes Appl. 29 (1988), 141- 143. (1988) Zbl0657.60092MR0952825DOI10.1016/0304-4149(88)90033-6
- U. G. Rothblum, C. P. Tan, 10.1016/0024-3795(85)90125-9, Linear Algebra Appl. 66 (1985), 45-86. (1985) MR0781294DOI10.1016/0024-3795(85)90125-9
- Т. А. Сарымсаков, Основы теории процессов Маркова, Государственное издательство технико-теоретической литературы, Москва (1954). (1954) Zbl0995.90535
- Т. А. Сарымсаков, К теории нзоднородных цепей Маркова, Докл. АН УзССР 8 (1956), 3-7. (1956) Zbl0995.90522
- E. Seneta, 10.1017/S0305004100077276, Proc. Camb. Phil. Soc. 74 (1973), 507-513. (1973) Zbl0271.60074MR0331522DOI10.1017/S0305004100077276
- E. Seneta, 10.1017/S000186780003281X, Adv. Appl. Prob. 11 (1979), 576-590. (1979) Zbl0406.60060MR0533060DOI10.1017/S000186780003281X
- E. Seneta, Non-negative Matrices and Markov Chains, Springer-Verlag, New York, Heidelberg and Berlin (1981). (1981) Zbl0471.60001MR2209438
- C. P. Tan, 10.2307/3213840, J. Appl. Prob. 19 (1982), 858-863. (1982) Zbl0501.60074MR0675151DOI10.2307/3213840
- C. P. Tan, 10.2307/3213801, J. Appl. Prob. 20 (1983), 277-287. (1983) Zbl0515.60072MR0698531DOI10.2307/3213801
- D. Vere-Jones, 10.1093/qmath/13.1.7, Quart. J. Math. Oxford (2) 13 (1962), 7-28. (1962) Zbl0104.11805MR0141160DOI10.1093/qmath/13.1.7
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.