Coefficients of ergodicity generated by non-symmetrical vector norms

Antonín Lešanovský

Czechoslovak Mathematical Journal (1990)

  • Volume: 40, Issue: 2, page 284-294
  • ISSN: 0011-4642

How to cite

top

Lešanovský, Antonín. "Coefficients of ergodicity generated by non-symmetrical vector norms." Czechoslovak Mathematical Journal 40.2 (1990): 284-294. <http://eudml.org/doc/13850>.

@article{Lešanovský1990,
author = {Lešanovský, Antonín},
journal = {Czechoslovak Mathematical Journal},
keywords = {coefficients of ergodicity of stochastic matrices},
language = {eng},
number = {2},
pages = {284-294},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Coefficients of ergodicity generated by non-symmetrical vector norms},
url = {http://eudml.org/doc/13850},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Lešanovský, Antonín
TI - Coefficients of ergodicity generated by non-symmetrical vector norms
JO - Czechoslovak Mathematical Journal
PY - 1990
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 40
IS - 2
SP - 284
EP - 294
LA - eng
KW - coefficients of ergodicity of stochastic matrices
UR - http://eudml.org/doc/13850
ER -

References

top
  1. F. L. Bauer E. Deutsch J. Stoer, Abschätzungen für die Eigenwerte positiver linearen Operatoren, Linear Algebra and Applicns. 2 (1969), 275-301. (1969) MR0245587
  2. G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publicns., vol. XXV, Providence, R. I.-3rd edition (1967). (1967) Zbl0153.02501MR0227053
  3. R. L. Dobrushin, Central limit theorem for non-stationary Markov chains I, II, Theory Prob. Appl. 1 (1956), 63-80, 329-383 (English translation). (1956) Zbl0093.15001MR0086436
  4. J. Hajnal, Weak ergodicity in non-homogeneous Markov chains, Proc. Camb. Phil. Soc. 54(1958),233-246. (1958) Zbl0082.34501MR0096306
  5. R. A. Hom, Ch. A. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne and Sydney (1985). (1985) MR0832183
  6. S. Karlin, A First Course in Stochastic Processes, Academic Press, New York and London (1968). (1968) Zbl0177.21102MR0208657
  7. D. G. Kendall, Geometric ergodicity and the theory of queues, In: Matehmatical Methods in the Social Sciences, K. J. Arrow, S. Karlin, P. Suppes (eds.), Stanford, California (1960). (1960) MR0124088
  8. P. Kratochvíl A. Lešanovský, A contractive property in finite state Markov chains, Czechoslovak Math. J. 35 (110) (1985), 491-509. (1985) MR0803042
  9. A. Paz, Introduction to Probabilistic Automata, Academic Press, New York (1971). (1971) Zbl0234.94055MR0289222
  10. A. Rhodius, 10.1016/0304-4149(88)90033-6, Stochastic Processes Appl. 29 (1988), 141- 143. (1988) Zbl0657.60092MR0952825DOI10.1016/0304-4149(88)90033-6
  11. U. G. Rothblum, C. P. Tan, 10.1016/0024-3795(85)90125-9, Linear Algebra Appl. 66 (1985), 45-86. (1985) MR0781294DOI10.1016/0024-3795(85)90125-9
  12. Т. А. Сарымсаков, Основы теории процессов Маркова, Государственное издательство технико-теоретической литературы, Москва (1954). (1954) Zbl0995.90535
  13. Т. А. Сарымсаков, К теории нзоднородных цепей Маркова, Докл. АН УзССР 8 (1956), 3-7. (1956) Zbl0995.90522
  14. E. Seneta, 10.1017/S0305004100077276, Proc. Camb. Phil. Soc. 74 (1973), 507-513. (1973) Zbl0271.60074MR0331522DOI10.1017/S0305004100077276
  15. E. Seneta, 10.2307/1426955, Adv. Appl. Prob. 11 (1979), 576-590. (1979) Zbl0406.60060MR0533060DOI10.2307/1426955
  16. E. Seneta, Non-negative Matrices and Markov Chains, Springer-Verlag, New York, Heidelberg and Berlin (1981). (1981) Zbl0471.60001MR2209438
  17. C. P. Tan, 10.2307/3213840, J. Appl. Prob. 19 (1982), 858-863. (1982) Zbl0501.60074MR0675151DOI10.2307/3213840
  18. C. P. Tan, 10.2307/3213801, J. Appl. Prob. 20 (1983), 277-287. (1983) Zbl0515.60072MR0698531DOI10.2307/3213801
  19. D. Vere-Jones, 10.1093/qmath/13.1.7, Quart. J. Math. Oxford (2) 13 (1962), 7-28. (1962) Zbl0104.11805MR0141160DOI10.1093/qmath/13.1.7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.