Butler groups of infinite rank

Ladislav Bican

Czechoslovak Mathematical Journal (1994)

  • Volume: 44, Issue: 1, page 67-79
  • ISSN: 0011-4642

How to cite

top

Bican, Ladislav. "Butler groups of infinite rank." Czechoslovak Mathematical Journal 44.1 (1994): 67-79. <http://eudml.org/doc/31394>.

@article{Bican1994,
author = {Bican, Ladislav},
journal = {Czechoslovak Mathematical Journal},
keywords = {Butler groups; separative subgroups; -groups; -groups; Continuum Hypothesis; ; balanced extension; continuous well-ordered ascending chain; pure subgroups; finite rank completely decomposable group; separative chain; smooth ascending chain of pure subgroups; prebalanced subgroup; smooth preseparative chain},
language = {eng},
number = {1},
pages = {67-79},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Butler groups of infinite rank},
url = {http://eudml.org/doc/31394},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Bican, Ladislav
TI - Butler groups of infinite rank
JO - Czechoslovak Mathematical Journal
PY - 1994
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 44
IS - 1
SP - 67
EP - 79
LA - eng
KW - Butler groups; separative subgroups; -groups; -groups; Continuum Hypothesis; ; balanced extension; continuous well-ordered ascending chain; pure subgroups; finite rank completely decomposable group; separative chain; smooth ascending chain of pure subgroups; prebalanced subgroup; smooth preseparative chain
UR - http://eudml.org/doc/31394
ER -

References

top
  1. Butler groups of infinite rank and axiom 3, Czech. Math. J. 37 (1987), 293–309. (1987) MR0882600
  2. Splitting in abelian groups, Czech. Math. J. 28 (1978), 356–364. (1978) Zbl0421.20022MR0480778
  3. Purely finitely generated groups, Comment. Math. Univ. Carolinae 21 (1980), 209–218. (1980) MR0580678
  4. Pure subgroups of Butler groups, Proceedings of the Udine Conference April 1984, R. Göbel, at al. CISM Courses and Lectures no. 287 (eds.), Springer Verlag, Wien-New York, pp. 203–213. Zbl0569.20045MR0789818
  5. On a class of locally Butler groups, Comment. Math. Univ. Carolinae 32 (1991), 597–600. (1991) Zbl0748.20029MR1159805
  6. 10.1016/0022-4049(92)90106-P, J. Pure Appl. Algebra 78 (1992), 221–238. (1992) MR1163276DOI10.1016/0022-4049(92)90106-P
  7. Subgroups of Butler groups. To appear, . MR1261020
  8. Infinite rank Butler groups, Proc. Abelian Group Theory Conference, Honolulu, Lecture Notes in Math. vol. 1006, Springer-Verlag, 1983, pp. 171–189. (1983) MR0722617
  9. A class of torsion-free abelian groups of finite rank, Proc. London Math. Soc. 15 (1965), 680–698. (1965) Zbl0131.02501MR0218446
  10. Infinite rank Butler groups II, Trans. Amer. Math. Soc. 320 (1990), 643–664. (1990) MR0963246
  11. 10.1090/S0002-9947-1988-0920150-X, Trans. Amer. Math. Soc. 305 (1988), 129–142. (1988) MR0920150DOI10.1090/S0002-9947-1988-0920150-X
  12. 10.1515/form.1991.3.23, Forum Math. 3 (1991), 23–33. (1991) MR1085593DOI10.1515/form.1991.3.23
  13. Infinite Abelian groups, vol. I and II, Academic Press, New York, 1973 and 1977. (1973 and 1977) MR0255673
  14. Infinite rank Butler groups, Preprint. 
  15. Butler groups of arbitrary cardinality. To appear, . MR1244670
  16. 10.1090/conm/130/1176115, Contemporary Math. 130 (1992), 133–143. (1992) MR1176115DOI10.1090/conm/130/1176115
  17. 10.1017/S0004972700017901, Bull. Austral. Math. Soc. 41 (1990), 117–122. (1990) MR1043972DOI10.1017/S0004972700017901
  18. 10.1007/BF02483879, Algebra Universalis 12 (1981), 205–220. (1981) Zbl0476.03039MR0608664DOI10.1007/BF02483879
  19. 10.1007/BF01191177, Arch. Comment. Math. 42 (1984), 208–213. (1984) Zbl0528.20040MR0751497DOI10.1007/BF01191177
  20. Butler groups, valuated vector spaces and duality, Rend. Sem. Mat. Univ. Padova 72 (1984), 13–19. (1984) Zbl0576.20033MR0778329

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.