On the existence of infinitely many periodic solutions for an equation of a rectangular thin plate

Eduard Feireisl

Czechoslovak Mathematical Journal (1987)

  • Volume: 37, Issue: 2, page 334-341
  • ISSN: 0011-4642

How to cite

top

Feireisl, Eduard. "On the existence of infinitely many periodic solutions for an equation of a rectangular thin plate." Czechoslovak Mathematical Journal 37.2 (1987): 334-341. <http://eudml.org/doc/13646>.

@article{Feireisl1987,
author = {Feireisl, Eduard},
journal = {Czechoslovak Mathematical Journal},
keywords = {infinite number of periodic solutions; Rayleigh-Ritz approximation; sequence of variational problems; topological methods},
language = {eng},
number = {2},
pages = {334-341},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the existence of infinitely many periodic solutions for an equation of a rectangular thin plate},
url = {http://eudml.org/doc/13646},
volume = {37},
year = {1987},
}

TY - JOUR
AU - Feireisl, Eduard
TI - On the existence of infinitely many periodic solutions for an equation of a rectangular thin plate
JO - Czechoslovak Mathematical Journal
PY - 1987
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 37
IS - 2
SP - 334
EP - 341
LA - eng
KW - infinite number of periodic solutions; Rayleigh-Ritz approximation; sequence of variational problems; topological methods
UR - http://eudml.org/doc/13646
ER -

References

top
  1. Fadell E. R., Husseini S. Y., Rabinowitz P. H., Borsuk-Ulam theorems for arbitrary actions and applications, Trans. A.M.S. 274 (1982), pp. 345-360. (1982) MR0670937
  2. Feireisl E., Free vibrations for an equation of a rectangular thin plate, to appear in Aplikace matematiky. MR0940708
  3. Rabinowitz P. H., 10.1002/cpa.3160370203, Comm. Pure Appl. Math. 37 (1984), pp. 189-206. (1984) Zbl0522.35065MR0733716DOI10.1002/cpa.3160370203
  4. Chang K. C, Sanchez L., 10.1002/mma.1670040113, Math. Meth. in the Appl. Sci. 4 (1982), pp. 194-205. (1982) Zbl0501.35004MR0659037DOI10.1002/mma.1670040113
  5. Štědrý M., Vejvoda O., Existence of classical periodic solutions of a wave equation: a connection of a number-theoretical character of the period with geometrical properties of solutions, (in Russian), Differencialnye uravnenia 20 (1984), pp. 1733-1739. (1984) MR0767883

NotesEmbed ?

top

You must be logged in to post comments.