On boundedness of superposition operators in spaces of Triebel-Lizorkin type

Winfried Sickel

Czechoslovak Mathematical Journal (1989)

  • Volume: 39, Issue: 2, page 323-347
  • ISSN: 0011-4642

How to cite

top

Sickel, Winfried. "On boundedness of superposition operators in spaces of Triebel-Lizorkin type." Czechoslovak Mathematical Journal 39.2 (1989): 323-347. <http://eudml.org/doc/13780>.

@article{Sickel1989,
author = {Sickel, Winfried},
journal = {Czechoslovak Mathematical Journal},
keywords = {superposition operator spaces of Triebel-Lizorkin type},
language = {eng},
number = {2},
pages = {323-347},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On boundedness of superposition operators in spaces of Triebel-Lizorkin type},
url = {http://eudml.org/doc/13780},
volume = {39},
year = {1989},
}

TY - JOUR
AU - Sickel, Winfried
TI - On boundedness of superposition operators in spaces of Triebel-Lizorkin type
JO - Czechoslovak Mathematical Journal
PY - 1989
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 39
IS - 2
SP - 323
EP - 347
LA - eng
KW - superposition operator spaces of Triebel-Lizorkin type
UR - http://eudml.org/doc/13780
ER -

References

top
  1. D. R. Adams, 10.1007/BF02385830, Ark. Mat. 14 (1976), 125-140. (1976) MR0417774DOI10.1007/BF02385830
  2. G. Bourdaud, Sur les opérateurs peudo-différentiels à coefficients peu réguliers, Diss. Univ. de Paris-Sud, 1983. (1983) 
  3. B. E. J. Dahlberg, A note on Sobolev spaces, Proc. Symp. Pure Math. 35, 1979, part I, 183-185. (1979) Zbl0421.46027MR0545257
  4. D. E. Edmunds, H. Triebel, Remarks on nonlinear elliptic equations of the type Δ u + u = | u | p + f bounded domains, J. London Math. Soc. (2) 31 (1985), 331-339. (1985) MR0809954
  5. C. Fefferman, E. M. Stein, 10.2307/2373450, Amer. J. Math. 93 (1971), 107-115. (1971) Zbl0222.26019MR0284802DOI10.2307/2373450
  6. C. Fefferman, E. M. Stein, 10.1007/BF02392215, Acta Math. 129 (1972), 137-193. (1972) MR0447953DOI10.1007/BF02392215
  7. M. Marcus, V. J. Mizel, Absolute continuity on tracks and mappings of Sobolev spaces, Rational Mech. Anal. 42 (1972), 294-320. (1972) Zbl0236.46033MR0338765
  8. M. Marcus, V. J. Mizel, 10.1090/S0002-9947-1979-0531975-1, Trans. Amer. Math. Soc. 251 (1979), 187-218. (1979) MR0531975DOI10.1090/S0002-9947-1979-0531975-1
  9. J. Marschall, Pseudo-differential operators with nonregular symbols, Thesis, FU Berlin (West), 1985. (1985) 
  10. Y. Meyer, Remarques sur un théorème de J. M. Bony, Suppl. Rendiconti Circ. Mat. Palermo Serie II, 1 (1981), 1-20. (1981) Zbl0473.35021MR0639462
  11. S. Mizohata, Lectures on the Cauchy problem, Tata Institute, Bombay 1965. (1965) MR0219881
  12. J. Peetre, Interpolation of Lipschitz operators and metric spaces, Matematica (Cluj) 12 (35) (1970), 325-334. (1970) Zbl0217.44504MR0482280
  13. J. Peetre, 10.1007/BF02386201, Ark. Mat. 13 (1975), 123-130. (1975) Zbl0302.46021MR0380394DOI10.1007/BF02386201
  14. J. Rauch, An L 2 -proof that H s is invariant under nonlinear maps for s > n 2 , In: Global Analysis, Analysis on Manifolds, Teubner-Texte Math., 57, Teubner, Leipzig 1983. (1983) MR0730621
  15. Th. Runst, Para-differential operators in spaces of Triebel-Lizorkin and Besov type, Z. Anal. Anwendungen 4 (1985), 557-573. (1985) Zbl0592.35011MR0818984
  16. Th. Runst, 10.1007/BF01909369, Anal. Math. 12 (1986), 313-346. (1986) MR0877164DOI10.1007/BF01909369
  17. W. Sickel, On pointwise multipliers in Besov-Triebel-Lizorkin spaces, Seminar Analysis 1986 (ed. by B.-W. Schulze and H. Triebel), Teubner-Texte Math., 96, Teubner, Leipzig 1987. (1986) MR0932288
  18. W. Sickel, Superposition offunctions in spaces of Besov-Triebel-Lizorkin type. The critical case 1 < s < n p , Seminar Analysis 1987 (ed. by B.-W. Schulze and H. Triebel), Teubner-Texte Math. 106, Teubner, Leipzig, 1988. (1987) MR1066752
  19. G. Stampacchia, Equations elliptiques du second ordre à coefficients discontinues, Univ. Montreal Press, Quebec, 1966. (1966) MR0251373
  20. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton 1979. (1979) MR0290095
  21. H. Triebel, Theory of function spaces, Akad. Verlagsges. Geest and Portig K. G., Leipzig and Birkhäuser Verlag, Basel, Boston, Stuttgart 1983. (1983) Zbl0546.46028MR0781540
  22. H. Triebel, 10.1002/mana.3211170115, Math. Nachr. 117 (1984), 193-213. (1984) MR0755303DOI10.1002/mana.3211170115
  23. M. Yamazaki, A quasi-homogeneous version of paradifferential operators I. Boundedness on spaces of Besov type, J. Fac. Sci. Univ. Tokyo, IA33 (1986), 131-174. (1986) Zbl0608.47058MR0837335
  24. M. Yamazaki, A quasi-homogeneous version of the microlocal analysis for nonlinear partial differential equations, Preprint. Zbl0701.35162MR0977891

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.