Superposition of functions in Sobolev spaces of fractional order. A survey

Winfried Sickel

Banach Center Publications (1992)

  • Volume: 27, Issue: 2, page 481-497
  • ISSN: 0137-6934

How to cite

top

Sickel, Winfried. "Superposition of functions in Sobolev spaces of fractional order. A survey." Banach Center Publications 27.2 (1992): 481-497. <http://eudml.org/doc/262683>.

@article{Sickel1992,
author = {Sickel, Winfried},
journal = {Banach Center Publications},
keywords = {nonlinear superposition operators; degeneracy phenomena},
language = {eng},
number = {2},
pages = {481-497},
title = {Superposition of functions in Sobolev spaces of fractional order. A survey},
url = {http://eudml.org/doc/262683},
volume = {27},
year = {1992},
}

TY - JOUR
AU - Sickel, Winfried
TI - Superposition of functions in Sobolev spaces of fractional order. A survey
JO - Banach Center Publications
PY - 1992
VL - 27
IS - 2
SP - 481
EP - 497
LA - eng
KW - nonlinear superposition operators; degeneracy phenomena
UR - http://eudml.org/doc/262683
ER -

References

top
  1. [1] D. R. Adams and M. Frazier, BMO and smooth truncation in Sobolev spaces, Studia Math. 89 (1988), 241-260. Zbl0679.46025
  2. [2] J. Appell and P. Zabreĭko, Nonlinear Superposition Operators, Cambridge Univ. Press, Cambridge 1990. 
  3. [3] N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385-476. Zbl0102.32401
  4. [4] G. Bourdaud, Sur les opérateurs pseudo-différentiels à coefficients peu réguliers, Diss., Univ. de Paris Sud, 1983. 
  5. [5] A. P. Calderón, Lebesgue spaces of functions and distributions, in: Partial Differential Equations, Proc. Sympos. Pure Math. 4, Amer. Math. Soc., 1961, 33-49. 
  6. [6] T. Cazenave and F. B. Weissler, The Cauchy Problem for the critical nonlinear Schrödinger equation in H s , Nonlinear Anal. 14 (1990), 807-836. Zbl0706.35127
  7. [7] B. E. J. Dahlberg, A note on Sobolev spaces, in: Proc. Sympos. Pure Math. 35, Part I, Amer. Math. Soc., 1979, 183-185. 
  8. [8] P. Drabek and Th. Runst, On the existence of solutions of a semilinear elliptic boundary value problem with superlinear nonlinearities, Z. Anal. Anwendungen 9 (1990), 105-112. Zbl0726.35043
  9. [9] D. E. Edmunds and H. Triebel, Remarks on nonlinear elliptic equations of the type Δ u + u = | u | p + f in bounded domains, J. London Math. Soc. (2) 91 (1985), 331-339. 
  10. [10] J. Franke and T. Runst, On the admissibility of function spaces of type B p , q s and F p , q s and boundary value problems for non-linear partial differential equations, Anal. Math. 13 (1987), 3-27. Zbl0654.35034
  11. [11] L. Maligranda, Integration of locally Hölder operators, Studia Math. 78 (1984), 289-296. Zbl0566.46039
  12. [12] M. Marcus and V. J. Mizel, Complete characterization of functions which act via superposition on Sobolev spaces, Trans. Amer. Math. Soc. 251 (1979), 187-218. Zbl0417.46035
  13. [13] J. Marschall, Pseudo-differential operators with nonregular symbols, thesis, FU Berlin, 1985. 
  14. [14] Y. Meyer, Remarques sur un théorème de J. M. Bony, Rend. Circ. Mat. Palermo (2) Suppl. 1 (1981), 1-20. 
  15. [15] S. Mizohata, Lectures on the Cauchy Problem, Tata Institute, Bombay 1965. 
  16. [16] J. Moser, A rapidly convergent iteration method and non-linear differential equations. I, Ann. Scuola Norm. Sup. Pisa 20 (2) (1966), 265-315; II, ibid. 20 (3) (1966), 499-535. Zbl0144.18202
  17. [17] L. Nirenberg, On elliptic partial differential equations, ibid. 13 (1959), 115-162. Zbl0088.07601
  18. [18] J. Peetre, Interpolation of Lipschitz operators and metric spaces, Mathematica (Cluj) 12 (35) (1970), 325-334. Zbl0217.44504
  19. [19] T. Runst, Paradifferential operators in spaces of Triebel-Lizorkin and Besov type, Z. Anal. Anwendungen 4 (1985), 557-573. Zbl0592.35011
  20. [20] T. Runst, Mapping properties of non-linear operators in spaces of Triebel-Lizorkin and Besov type, Anal. Math. 12 (1986), 323-346. Zbl0644.46022
  21. [21] T. Runst, Solvability of semilinear elliptic boundary value problems in function spaces, in: Surveys on Analysis, Geometry and Mathematical Physics, Teubner-Texte Math. 117, Teubner, Leipzig 1990, 198-292. 
  22. [22] T. Runst and W. Sickel, Mapping properties of T:f → |f| in Besov-Triebel-Lizorkin spaces and an application to a nonlinear boundary value problem, preprint. 
  23. [23] W. Sickel, On pointwise multipliers in Besov-Triebel-Lizorkin spaces, in: Seminar Analysis of the Karl-Weierstrass-Institute 1985/86, Teubner-Texte Math. 96, Teubner, Leipzig 1987, 45-103. 
  24. [24] W. Sickel, On boundedness of superposition operators in spaces of Triebel-Lizorkin type, Czechoslovak Math. J. 39 (114) (1989), 323-347. Zbl0693.46039
  25. [25] W. Sickel, Abbildungseigenschaften von Nemytckii-Operatoren in Besov-Triebel-Lizorkin-Räumen und ausgewählte Anwendungen, manuscript. 
  26. [26] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press., Princeton 1970. Zbl0207.13501
  27. [27] R. S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031-1060. Zbl0145.38301
  28. [28] F. Szigeti, On Niemitzki operators in Sobolev spaces, Z. Angew. Math. Mech. 63 (5) (1983), T332. Zbl0549.47014
  29. [29] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, NorthHolland, Amsterdam, and Deutscher Verlag Wiss., Berlin 1978. 
  30. [30] H. Triebel, Theory of Function Spaces, Akad. Verlagsges. Geest & Portig K. G., Leipzig 1983 and Birkhäuser, Basel 1983. 
  31. [31] H. Triebel, Mapping properties of non-linear operators generated by holomorphic ϕ(u) in function spaces of Besov-Sobolev-Hardy type. Boundary value problems for elliptic differential equations of type Δu = f(x) + Φ(u), Math. Nachr. 117 (1984), 193-213. 
  32. [32] M. Yamazaki, A quasi-homogeneous version of paradifferential operators, I. Boundedness on spaces of Besov type, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986), 131-174. Zbl0608.47058

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.