Superposition of functions in Sobolev spaces of fractional order. A survey

Winfried Sickel

Banach Center Publications (1992)

  • Volume: 27, Issue: 2, page 481-497
  • ISSN: 0137-6934

How to cite

top

Sickel, Winfried. "Superposition of functions in Sobolev spaces of fractional order. A survey." Banach Center Publications 27.2 (1992): 481-497. <http://eudml.org/doc/262683>.

@article{Sickel1992,
author = {Sickel, Winfried},
journal = {Banach Center Publications},
keywords = {nonlinear superposition operators; degeneracy phenomena},
language = {eng},
number = {2},
pages = {481-497},
title = {Superposition of functions in Sobolev spaces of fractional order. A survey},
url = {http://eudml.org/doc/262683},
volume = {27},
year = {1992},
}

TY - JOUR
AU - Sickel, Winfried
TI - Superposition of functions in Sobolev spaces of fractional order. A survey
JO - Banach Center Publications
PY - 1992
VL - 27
IS - 2
SP - 481
EP - 497
LA - eng
KW - nonlinear superposition operators; degeneracy phenomena
UR - http://eudml.org/doc/262683
ER -

References

top
  1. [1] D. R. Adams and M. Frazier, BMO and smooth truncation in Sobolev spaces, Studia Math. 89 (1988), 241-260. Zbl0679.46025
  2. [2] J. Appell and P. Zabreĭko, Nonlinear Superposition Operators, Cambridge Univ. Press, Cambridge 1990. 
  3. [3] N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385-476. Zbl0102.32401
  4. [4] G. Bourdaud, Sur les opérateurs pseudo-différentiels à coefficients peu réguliers, Diss., Univ. de Paris Sud, 1983. 
  5. [5] A. P. Calderón, Lebesgue spaces of functions and distributions, in: Partial Differential Equations, Proc. Sympos. Pure Math. 4, Amer. Math. Soc., 1961, 33-49. 
  6. [6] T. Cazenave and F. B. Weissler, The Cauchy Problem for the critical nonlinear Schrödinger equation in H s , Nonlinear Anal. 14 (1990), 807-836. Zbl0706.35127
  7. [7] B. E. J. Dahlberg, A note on Sobolev spaces, in: Proc. Sympos. Pure Math. 35, Part I, Amer. Math. Soc., 1979, 183-185. 
  8. [8] P. Drabek and Th. Runst, On the existence of solutions of a semilinear elliptic boundary value problem with superlinear nonlinearities, Z. Anal. Anwendungen 9 (1990), 105-112. Zbl0726.35043
  9. [9] D. E. Edmunds and H. Triebel, Remarks on nonlinear elliptic equations of the type Δ u + u = | u | p + f in bounded domains, J. London Math. Soc. (2) 91 (1985), 331-339. 
  10. [10] J. Franke and T. Runst, On the admissibility of function spaces of type B p , q s and F p , q s and boundary value problems for non-linear partial differential equations, Anal. Math. 13 (1987), 3-27. Zbl0654.35034
  11. [11] L. Maligranda, Integration of locally Hölder operators, Studia Math. 78 (1984), 289-296. Zbl0566.46039
  12. [12] M. Marcus and V. J. Mizel, Complete characterization of functions which act via superposition on Sobolev spaces, Trans. Amer. Math. Soc. 251 (1979), 187-218. Zbl0417.46035
  13. [13] J. Marschall, Pseudo-differential operators with nonregular symbols, thesis, FU Berlin, 1985. 
  14. [14] Y. Meyer, Remarques sur un théorème de J. M. Bony, Rend. Circ. Mat. Palermo (2) Suppl. 1 (1981), 1-20. 
  15. [15] S. Mizohata, Lectures on the Cauchy Problem, Tata Institute, Bombay 1965. 
  16. [16] J. Moser, A rapidly convergent iteration method and non-linear differential equations. I, Ann. Scuola Norm. Sup. Pisa 20 (2) (1966), 265-315; II, ibid. 20 (3) (1966), 499-535. Zbl0144.18202
  17. [17] L. Nirenberg, On elliptic partial differential equations, ibid. 13 (1959), 115-162. Zbl0088.07601
  18. [18] J. Peetre, Interpolation of Lipschitz operators and metric spaces, Mathematica (Cluj) 12 (35) (1970), 325-334. Zbl0217.44504
  19. [19] T. Runst, Paradifferential operators in spaces of Triebel-Lizorkin and Besov type, Z. Anal. Anwendungen 4 (1985), 557-573. Zbl0592.35011
  20. [20] T. Runst, Mapping properties of non-linear operators in spaces of Triebel-Lizorkin and Besov type, Anal. Math. 12 (1986), 323-346. Zbl0644.46022
  21. [21] T. Runst, Solvability of semilinear elliptic boundary value problems in function spaces, in: Surveys on Analysis, Geometry and Mathematical Physics, Teubner-Texte Math. 117, Teubner, Leipzig 1990, 198-292. 
  22. [22] T. Runst and W. Sickel, Mapping properties of T:f → |f| in Besov-Triebel-Lizorkin spaces and an application to a nonlinear boundary value problem, preprint. 
  23. [23] W. Sickel, On pointwise multipliers in Besov-Triebel-Lizorkin spaces, in: Seminar Analysis of the Karl-Weierstrass-Institute 1985/86, Teubner-Texte Math. 96, Teubner, Leipzig 1987, 45-103. 
  24. [24] W. Sickel, On boundedness of superposition operators in spaces of Triebel-Lizorkin type, Czechoslovak Math. J. 39 (114) (1989), 323-347. Zbl0693.46039
  25. [25] W. Sickel, Abbildungseigenschaften von Nemytckii-Operatoren in Besov-Triebel-Lizorkin-Räumen und ausgewählte Anwendungen, manuscript. 
  26. [26] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press., Princeton 1970. Zbl0207.13501
  27. [27] R. S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031-1060. Zbl0145.38301
  28. [28] F. Szigeti, On Niemitzki operators in Sobolev spaces, Z. Angew. Math. Mech. 63 (5) (1983), T332. Zbl0549.47014
  29. [29] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, NorthHolland, Amsterdam, and Deutscher Verlag Wiss., Berlin 1978. 
  30. [30] H. Triebel, Theory of Function Spaces, Akad. Verlagsges. Geest & Portig K. G., Leipzig 1983 and Birkhäuser, Basel 1983. 
  31. [31] H. Triebel, Mapping properties of non-linear operators generated by holomorphic ϕ(u) in function spaces of Besov-Sobolev-Hardy type. Boundary value problems for elliptic differential equations of type Δu = f(x) + Φ(u), Math. Nachr. 117 (1984), 193-213. 
  32. [32] M. Yamazaki, A quasi-homogeneous version of paradifferential operators, I. Boundedness on spaces of Besov type, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986), 131-174. Zbl0608.47058

NotesEmbed ?

top

You must be logged in to post comments.