On the boundedness of the mapping f | f | in Besov spaces

Patrick Oswald

Commentationes Mathematicae Universitatis Carolinae (1992)

  • Volume: 33, Issue: 1, page 57-66
  • ISSN: 0010-2628

Abstract

top
For 1 p , precise conditions on the parameters are given under which the particular superposition operator T : f | f | is a bounded map in the Besov space B p , q s ( R 1 ) . The proofs rely on linear spline approximation theory.

How to cite

top

Oswald, Patrick. "On the boundedness of the mapping $f\rightarrow |f|$ in Besov spaces." Commentationes Mathematicae Universitatis Carolinae 33.1 (1992): 57-66. <http://eudml.org/doc/247418>.

@article{Oswald1992,
abstract = {For $1\le p\le \infty $, precise conditions on the parameters are given under which the particular superposition operator $T:f\rightarrow |f|$ is a bounded map in the Besov space $B^s_\{p,q\}(R^1)$. The proofs rely on linear spline approximation theory.},
author = {Oswald, Patrick},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Nemytzki operators; Besov spaces; moduli of smoothness; linear splines; scale of Besov spaces; linear spline approximation},
language = {eng},
number = {1},
pages = {57-66},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the boundedness of the mapping $f\rightarrow |f|$ in Besov spaces},
url = {http://eudml.org/doc/247418},
volume = {33},
year = {1992},
}

TY - JOUR
AU - Oswald, Patrick
TI - On the boundedness of the mapping $f\rightarrow |f|$ in Besov spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1992
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 33
IS - 1
SP - 57
EP - 66
AB - For $1\le p\le \infty $, precise conditions on the parameters are given under which the particular superposition operator $T:f\rightarrow |f|$ is a bounded map in the Besov space $B^s_{p,q}(R^1)$. The proofs rely on linear spline approximation theory.
LA - eng
KW - Nemytzki operators; Besov spaces; moduli of smoothness; linear splines; scale of Besov spaces; linear spline approximation
UR - http://eudml.org/doc/247418
ER -

References

top
  1. Appell J., Zabrejko P., Nonlinear superposition operators, Cambr. Univ. Press, Cambridge, 1990. Zbl1156.47052MR1066204
  2. Bourdaud G., Meyer Y., Fonctions qui operent sur les espaces de Sobolev, J. Funct. Anal. 97 (1991), 351-360. (1991) Zbl0737.46011MR1111186
  3. Cazenave T., Weissler F.B., The Cauchy problem for the critical nonlinear Schrödinger equation in H s , Nonl. Anal. Th. Meth. Appl. 14 (1990), 807-836. (1990) MR1055532
  4. Marcus M., Mizel V.J., Absolute continuity on tracks and mappings of Sobolev spaces, Arch. Rat. Mech. Anal. 45 (1972), 294-320. (1972) Zbl0236.46033MR0338765
  5. Marcus M., Mizel V.J., Nemitsky operators on Sobolev spaces, Arch. Rat. Mech. Anal. 51 (1973), 347-370. (1973) Zbl0266.46029MR0348480
  6. Marcus M., Mizel V.J., Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal. 33 (1978), 217-229. (1978) MR0546508
  7. Nikolskij S.M., Approximation of functions of several variables and imbedding theorems (2nd edition), Nauka, Moskva, 1977. MR0506247
  8. Oswald P., On estimates for one-dimensional spline approximation, In: Splines in Numerical Analysis (eds. J.Späth, J.W.Schmidt), Proc. ISAM'89 Wei{ß}ig 1989, Akad. Verl., Berlin, 1989, 111-124. Zbl0739.41015MR1004256
  9. Oswald P., On estimates for hierarchic basis representations of finite element functions, Report N/89/16, FSU Jena, 1989. 
  10. Runst T., Sickel W., Mapping properties of T : f | f | in Besov-Triebel-Lizorkin spaces and an application to a nonlinear boundary value problem, J. Approx. Th. (submitted). 
  11. Schumaker L.L., Spline functions: basic theory, Wiley, New York, 1981. Zbl1123.41008MR0606200
  12. Sickel W., On boundedness of superposition operators in spaces of Triebel-Lizorkin type, Czech. Math. J. 39 (1989), 323-347. (1989) Zbl0693.46039MR0992137
  13. Sickel W., Superposition of functions in Sobolev spaces of fractional order, A survey. Banach Center Publ. (submitted). Zbl0792.47062
  14. Triebel H., Interpolation theory, function spaces, differential operators, Dt. Verlag Wiss., Berlin 1978 - North-Holland, Amsterdam-New York-Oxford, 1978. Zbl0830.46028MR0500580

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.