On the boundedness of the mapping in Besov spaces
Commentationes Mathematicae Universitatis Carolinae (1992)
- Volume: 33, Issue: 1, page 57-66
 - ISSN: 0010-2628
 
Access Full Article
topAbstract
topHow to cite
topOswald, Patrick. "On the boundedness of the mapping $f\rightarrow |f|$ in Besov spaces." Commentationes Mathematicae Universitatis Carolinae 33.1 (1992): 57-66. <http://eudml.org/doc/247418>.
@article{Oswald1992,
	abstract = {For $1\le p\le \infty $, precise conditions on the parameters are given under which the particular superposition operator $T:f\rightarrow |f|$ is a bounded map in the Besov space $B^s_\{p,q\}(R^1)$. The proofs rely on linear spline approximation theory.},
	author = {Oswald, Patrick},
	journal = {Commentationes Mathematicae Universitatis Carolinae},
	keywords = {Nemytzki operators; Besov spaces; moduli of smoothness; linear splines; scale of Besov spaces; linear spline approximation},
	language = {eng},
	number = {1},
	pages = {57-66},
	publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
	title = {On the boundedness of the mapping $f\rightarrow |f|$ in Besov spaces},
	url = {http://eudml.org/doc/247418},
	volume = {33},
	year = {1992},
}
TY  - JOUR
AU  - Oswald, Patrick
TI  - On the boundedness of the mapping $f\rightarrow |f|$ in Besov spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
PB  - Charles University in Prague, Faculty of Mathematics and Physics
VL  - 33
IS  - 1
SP  - 57
EP  - 66
AB  - For $1\le p\le \infty $, precise conditions on the parameters are given under which the particular superposition operator $T:f\rightarrow |f|$ is a bounded map in the Besov space $B^s_{p,q}(R^1)$. The proofs rely on linear spline approximation theory.
LA  - eng
KW  - Nemytzki operators; Besov spaces; moduli of smoothness; linear splines; scale of Besov spaces; linear spline approximation
UR  - http://eudml.org/doc/247418
ER  - 
References
top- Appell J., Zabrejko P., Nonlinear superposition operators, Cambr. Univ. Press, Cambridge, 1990. Zbl1156.47052MR1066204
 - Bourdaud G., Meyer Y., Fonctions qui operent sur les espaces de Sobolev, J. Funct. Anal. 97 (1991), 351-360. (1991) Zbl0737.46011MR1111186
 - Cazenave T., Weissler F.B., The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonl. Anal. Th. Meth. Appl. 14 (1990), 807-836. (1990) MR1055532
 - Marcus M., Mizel V.J., Absolute continuity on tracks and mappings of Sobolev spaces, Arch. Rat. Mech. Anal. 45 (1972), 294-320. (1972) Zbl0236.46033MR0338765
 - Marcus M., Mizel V.J., Nemitsky operators on Sobolev spaces, Arch. Rat. Mech. Anal. 51 (1973), 347-370. (1973) Zbl0266.46029MR0348480
 - Marcus M., Mizel V.J., Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal. 33 (1978), 217-229. (1978) MR0546508
 - Nikolskij S.M., Approximation of functions of several variables and imbedding theorems (2nd edition), Nauka, Moskva, 1977. MR0506247
 - Oswald P., On estimates for one-dimensional spline approximation, In: Splines in Numerical Analysis (eds. J.Späth, J.W.Schmidt), Proc. ISAM'89 Wei{ß}ig 1989, Akad. Verl., Berlin, 1989, 111-124. Zbl0739.41015MR1004256
 - Oswald P., On estimates for hierarchic basis representations of finite element functions, Report N/89/16, FSU Jena, 1989.
 - Runst T., Sickel W., Mapping properties of in Besov-Triebel-Lizorkin spaces and an application to a nonlinear boundary value problem, J. Approx. Th. (submitted).
 - Schumaker L.L., Spline functions: basic theory, Wiley, New York, 1981. Zbl1123.41008MR0606200
 - Sickel W., On boundedness of superposition operators in spaces of Triebel-Lizorkin type, Czech. Math. J. 39 (1989), 323-347. (1989) Zbl0693.46039MR0992137
 - Sickel W., Superposition of functions in Sobolev spaces of fractional order, A survey. Banach Center Publ. (submitted). Zbl0792.47062
 - Triebel H., Interpolation theory, function spaces, differential operators, Dt. Verlag Wiss., Berlin 1978 - North-Holland, Amsterdam-New York-Oxford, 1978. Zbl0830.46028MR0500580
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.