# Contributions to the asymptotic behaviour of the equation $\dot{z}=f(t,z)$ with a complex-valued function $f$

Czechoslovak Mathematical Journal (1990)

- Volume: 40, Issue: 1, page 31-45
- ISSN: 0011-4642

## Access Full Article

top## How to cite

topKalas, Josef. "Contributions to the asymptotic behaviour of the equation $\dot{z}=f(t,z)$ with a complex-valued function $f$." Czechoslovak Mathematical Journal 40.1 (1990): 31-45. <http://eudml.org/doc/13828>.

@article{Kalas1990,

author = {Kalas, Josef},

journal = {Czechoslovak Mathematical Journal},

keywords = {Asymptotic properties; holomorphic function; Lyapunov function method; Riccati equation},

language = {eng},

number = {1},

pages = {31-45},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Contributions to the asymptotic behaviour of the equation $\dot\{z\}=f(t,z)$ with a complex-valued function $f$},

url = {http://eudml.org/doc/13828},

volume = {40},

year = {1990},

}

TY - JOUR

AU - Kalas, Josef

TI - Contributions to the asymptotic behaviour of the equation $\dot{z}=f(t,z)$ with a complex-valued function $f$

JO - Czechoslovak Mathematical Journal

PY - 1990

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 40

IS - 1

SP - 31

EP - 45

LA - eng

KW - Asymptotic properties; holomorphic function; Lyapunov function method; Riccati equation

UR - http://eudml.org/doc/13828

ER -

## References

top- J. Kalas, On a “Liapunov-like” function for an equation $\dot{z}=f(t,\phantom{\rule{0.166667em}{0ex}}z)$ with a complex-valued function $f$, Arch. Math. (Brno) 18 (1982), 65-76. (1982) Zbl0498.34039MR0683347
- J. Kalas, Asymptotic nature of solutions of the equation $\dot{z}=f(t,\phantom{\rule{0.166667em}{0ex}}z)$ with a complex-valued function $f$, Arch. Math. (Brno) 20 (1984), 83-94. (1984) Zbl0564.34005MR0784859
- J. Kalas, Some results on the asymptotic behaviour of the equation $\dot{z}=f(t,\phantom{\rule{0.166667em}{0ex}}z)$ with a complex-valued function $f$, Arch. Math. (Brno) 21 (1985), 195-199. (1985) Zbl0585.34037MR0833131
- J. Kalas, Asymptotic behaviour of the solutions of the equation $dz/dt=f(t,z)$ with a complex-valued function $f$, Colloquia Mathematica Societatis János Bolyai, 30. Qualitative Theory of Differential Equations, Szeged (Hungary), 1979, pp. 431 - 462. (1979) Zbl0486.34034MR0680606
- J. Kalas, On certain asymptotic properties of the solutions of the equation $\dot{z}=f(t,\phantom{\rule{0.166667em}{0ex}}z)$ with a complex-valued function $f$, Czech. Math. J. 33 (1983), 390-407. (1983) Zbl0547.34042MR0718923
- C. Kulig, On a system of differential equations, Zeszyty Naukowe Univ. Jagiellonskiego, Prace Mat., Zeszyt 9, 77 (1963), 37-48. (1963) Zbl0267.34029MR0204763
- M. Ráb, Equation ${Z}^{\text{'}}=A\left(t\right)-{Z}^{2}$ coefficient of which has a small modulus, Czech. Math. J. 27 (1971), 311-317. (1971) Zbl0223.34026MR0287096
- M. Ráb, 10.1016/0022-0396(77)90183-8, J. Diff. Equations 25 (1977), 108-114. (1977) Zbl0331.34006MR0492454DOI10.1016/0022-0396(77)90183-8
- Z. Tesařová, The Riccati differential equation with complex-valued coefficients and application to the equation ${x}^{\text{'}\text{'}}+P\left(t\right){x}^{\text{'}}+Q\left(t\right)x=0$, Arch. Math. (Brno) 18 (1982), 133-143. (1982) Zbl0514.34042MR0682101

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.