On a codimension 3 bifurcation of plane vector fields with symmetry
Czechoslovak Mathematical Journal (1990)
- Volume: 40, Issue: 2, page 295-310
- ISSN: 0011-4642
Access Full Article
topHow to cite
topMedveď, Milan. "On a codimension 3 bifurcation of plane vector fields with $Z_2$ symmetry." Czechoslovak Mathematical Journal 40.2 (1990): 295-310. <http://eudml.org/doc/13851>.
@article{Medveď1990,
author = {Medveď, Milan},
journal = {Czechoslovak Mathematical Journal},
keywords = {3-parameter family of plane vector fields; codimension 3; normal forms; existence of a homoclinic trajectory; periodic trajectories},
language = {eng},
number = {2},
pages = {295-310},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a codimension 3 bifurcation of plane vector fields with $Z_2$ symmetry},
url = {http://eudml.org/doc/13851},
volume = {40},
year = {1990},
}
TY - JOUR
AU - Medveď, Milan
TI - On a codimension 3 bifurcation of plane vector fields with $Z_2$ symmetry
JO - Czechoslovak Mathematical Journal
PY - 1990
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 40
IS - 2
SP - 295
EP - 310
LA - eng
KW - 3-parameter family of plane vector fields; codimension 3; normal forms; existence of a homoclinic trajectory; periodic trajectories
UR - http://eudml.org/doc/13851
ER -
References
top- V. I. Arnold, Geometric Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York 1983. (1983) MR0695786
- N. N. Bautin, E. A. Leontovich, Methods and Examples of Qualitative Study of Dynamical Systems in the Plane, Nauka, Moscow 1978 (Russian). (1978)
- R. I. Bogdanov, Versal deformations of a singular point of vector fields in the plane in the case of zero eigenvalues, Selecta Math. Soviet 1 (1981), 389-421 (Proc. of Petrovski Seminar, 2 (1976), 37-65) (Russian). (1981) MR0442996
- R. I. Bogdanov, Bifurcations of limit cycles of a certain family of vector fields in the plane, Selecta Math. Soviet 1 (1981), 373-387 (Proc. of Petrovski Seminar 2 (1976), 23-36) (Russian). (1981) MR0442988
- J. Carr, Application of Center Manifold Theory, Springer-Verlag, New York 1981. (1981)
- J. Carr S. N. Chow, J. K. Hale, 10.1016/0022-0396(85)90148-2, J. Differential Equations 59 (1985), 413-437. (1985) MR0807855DOI10.1016/0022-0396(85)90148-2
- S. N. Chow, J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York 1982. (1982) Zbl0487.47039MR0660633
- S. N. Chow, J. A. Sanders, 10.1016/0022-0396(86)90071-9, J. Differential Equations 64 (1986), 51-66. (1986) Zbl0594.34028MR0849664DOI10.1016/0022-0396(86)90071-9
- R. Cushman, J. A. Sanders, 10.1016/0022-0396(85)90156-1, J. Differential Equations 59 (1985), 243 - 256. (1985) Zbl0571.34021MR0804890DOI10.1016/0022-0396(85)90156-1
- G. Dangelmayer, J. Guckenheimer, 10.1007/BF00280410, Archive for Rational Mechanics and Analysis, 97 (1987), 321 - 352. (1987) MR0865844DOI10.1007/BF00280410
- B. Drachman S. A. Van Gils, Zhang Zhi-Fen, Abelian integrals for quadratic vector fields, J. Reine Angew. Math. 382 (1987), 165-180. (1987) MR0921170
- F. Dumortier R. Roussarie, J Sotomayor, Generic 3-parameter families of vector fields on the plane, Unfolding a singularity with nilpotent linear part. The cusp-case of codimension 3, Ergodic Theory Dynamical Systems 7 (1987), No. 3, 375-413. (1987) MR0912375
- C. Elpic E. Tirapegni M. Brachet P. Coullet, G. Iooss, A simple global characterization of normal forms of singular vector fields, Preprint No. 109, University of Nice, 1986, Physica 29 D (1987), 95-127. (1986) MR0923885
- J. Guckenheimer, Multiple bifurcation problems for chemical reactors, Physica 20 D (1986), 1-20. (1986) Zbl0593.34043MR0858791
- J. Guckenheimer, A condimension two bifurcation with circular symmetry, in "Multiparameter Bifurcation Theory", AMS series: Contemporary Math. 56 (1986), 175-184. (1986) MR0855089
- J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York 1983. (1983) Zbl0515.34001MR0709768
- E. I. Horozov, Versal deformation of equivariant vector fields with or symmetry, Proc. of Petrovski Seminar 5 (1979), 163-192 (Russian). (1979) MR0549627
- J. K. Hale, Introduction to dynamic bifurcation, in "Bifurcation Theory and Applications" (L. Salvadoei, Ed.), pp. 106-151, LNM 1057, Springer-Verlag 1984. (1984) Zbl0544.58016MR0753299
- Yu. S. Ilyashenko, 10.1090/trans2/118/10, Amer. Math. Soc. Transl. Vol. 118, No. 2, pp. 191-202, AMS, Providence, R. I., 1982. (1982) DOI10.1090/trans2/118/10
- Yu. S. Ilyashenko, Zeros of special abelian integrals in a real domain, Funct. Anal. Appl. 11 (1977), 309-311. (1977)
- M. Medved, Generic bifurcations of vector fields with a singularity of codimension 2, in "Equadiff 5, Bratislava 1981", Proceedings, Teubner-Texte zur Math., Band 47, Teubner-Verlag 1982, pp. 260-263. (1981) MR0715987
- M. Medved, The unfoldings of a germ of vector fields in the plane with a singularity of codimension 3, Czechosl. Math. J. 35 (110), 1 (1985), 1-42. (1985) Zbl0591.58022MR0779333
- M. Medved, Normal forms and bifurcations of some equivariant vector fields, to appear in Mathematica Slovaca 1990. (1990) Zbl0735.58024MR1094774
- M. Medved, On a codimension three bifurcations, Časopis pro pěstování matem., 109 (1984), 3-26. (1984) MR0741206
- J. A. Sanders, R. Cushman, 10.1137/0517039, SIAM J. Math. Anal., Vol. 17, No. 3 (1986), 495-511. (1986) Zbl0604.58041MR0838238DOI10.1137/0517039
- F. Tokens, 10.1016/0022-0396(73)90062-4, J. Differential Equations 14 (1973), 476-493. (1973) MR0339264DOI10.1016/0022-0396(73)90062-4
- F. Takens, Forced oscillations and bifurcations, in "Applications of Global Analysis", Comment, of Math. Inst. Rijksuniversiteit Ultrecht 1974. (1974) MR0478235
- H. Žoladek, 10.1016/0022-0396(87)90138-0, Differential Equations 67 (1987), 1-55. (1987) MR0878251DOI10.1016/0022-0396(87)90138-0
- H. Žoladek, On versality of certain families of symmetric vector fields on the plane, Math. Sb. 120 (1983), 473-499. (1983)
- H. Žoladek, Abelian integrals in unfolding of codimension 3 singular planar vector fields I. The saddle and elliptic cases, II. The focus case, To appear in Lecture Notes in Math.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.