Normal forms and bifurcations of some equivariant vector fields

Milan Medveď

Mathematica Slovaca (1990)

  • Volume: 40, Issue: 2, page 209-223
  • ISSN: 0139-9918

How to cite

top

Medveď, Milan. "Normal forms and bifurcations of some equivariant vector fields." Mathematica Slovaca 40.2 (1990): 209-223. <http://eudml.org/doc/31800>.

@article{Medveď1990,
author = {Medveď, Milan},
journal = {Mathematica Slovaca},
keywords = {invariant sets; equivariant vector fields; normal forms; bifurcation problems},
language = {eng},
number = {2},
pages = {209-223},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Normal forms and bifurcations of some equivariant vector fields},
url = {http://eudml.org/doc/31800},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Medveď, Milan
TI - Normal forms and bifurcations of some equivariant vector fields
JO - Mathematica Slovaca
PY - 1990
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 40
IS - 2
SP - 209
EP - 223
LA - eng
KW - invariant sets; equivariant vector fields; normal forms; bifurcation problems
UR - http://eudml.org/doc/31800
ER -

References

top
  1. BRÖCKER, Tһ., LANDER L., Diffеrеntiablе Gеrms and Catastrophеs, Cambridgе Univеrsity Prеss 1975. (1975) 
  2. BUZANO E., GEYMONAT G., POSTON T., Post buckling bеhaviour of a non-linеarly hypеrеlastic thin rod with crossеction invariant undеr thе dihеdral group Dn, Arch. Rational Mеch. Anal. 89, 1985, 307-388. (1985) MR0792535
  3. CARR J., Applications of Cеntеr Manifold Thеory, Appl. Math. Sci. 35, Springеr-Vеrlag 1981. (1981) MR0635782
  4. CUSHMAN R., SANDERS J. A., Nilpotеnt normal forms and rеprеsеntation thеory of sl(2. R)+, Multiparamеtеr bifurcation thеory, procееdings, еd. M. Golubitsky and J. Guckеnhеimеr, AMS sеriеs: Contеmporary Math., Vol. 56, 1986, 31-51. (1986) MR0855083
  5. DANGELMAYR G., GUCKENHEIMER J., On a four paramеatеr family of planar vеctor fiеlds, Archivе for Rational Mеch. Anal. Vol. 97, 1987, p. 321. (1987) MR0865844
  6. ELPHICK C., TIRAPEGNI E., BRACHET M., COULLET P., IOOSS G., A simplе global characterization of normal forms of singular vector fields, Preprint No. 109, University of Nice 1986; in Physica 29D, 1987, 95-127. (1986) MR0923885
  7. FIEDLER B., Global Bifurcation of Periodic Solutions with Symmetry, Lecture notes in Math. 1309, Springer-Verlag, Heidelberg 1988. (1988) Zbl0644.34038MR0947144
  8. GOLUBITSKY M., ROBERTS M., A classification of degenerate Hopf bifurcations with 0(2) symmetry, J. Diff.Eq. 69 1987, 216-264. (1987) MR0899161
  9. GOLUBITSKY M., SCHAEFFER D. G., Singularities and Groups in Bifurcation Theory, Vol. I, Applied Math. Sciences 51, Springer-Verlag, New York, 1985. (1985) Zbl0607.35004MR0771477
  10. GOLUBITSKY M., STEWART I., Hopf bifurcation in the presence of symmetry, Archive for Rational Mech. and Analysis, Vol. 87, No. 2, 1985, 107-165. (1985) Zbl0588.34030MR0765596
  11. GUCKENHEIMER J., A codimension two bifurcation with circular symmetry, Multiparameter bifurcation theory, AMS series: Contemporary Math., Vol. 56, 1986, 175-184. (1986) Zbl0616.58034MR0855089
  12. GUCKENHEIMER J., HOLMES P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York 1983. (1983) Zbl0515.34001MR0709768
  13. KLÍČ A., Period doubling bifurcations in a two-box model of the Brusselator, Aplikace matematiky, Vol. 28, No. 5, 1983, 335-343. (1983) Zbl0531.34030MR0712910
  14. KLÍČ A., Bifurcations of the periodic solutions in symmetric systems, Aplikace matematiky, Vol. 31,No. 1, 1986, 27-40. (1986) Zbl0596.34024MR0836800
  15. MEDVEĎ M., The unfoldings of a germ of vector fìelds in the plane with a singularity of codimension 3, Czech. Math. J., Vol. 35, No. 1, 1985, 1-42. (1985) Zbl0591.58022MR0779333
  16. SATTINGER D. H., Group Theoretical Methods in Bifurcation Theory, Lecture Notes in Math. 762, Springer-Verlag, Berlin 1979. (1979) 
  17. TAKENS F., Forced oscillations and bifurcation, Comm. Math. Inst. Rijksuniversitait Ultrecht 3, 1974, 1-59. (1974) MR0478235
  18. VANDERBAUWHEDE A., Center manifolds, normal forms and elementary bifurcations, to appear in Dynamics Reported. MR1000977
  19. VANDERBAUWHEDE A., local Bifurcation and Symmetry, Pitman, Boston 1982. (1982) Zbl0539.58022MR0697724
  20. VANDERBAUWHEDE A., Hopf bifurcation at non-semisimple eigenvalues, Multiparameter bifurcation theory, AMS series: Contemporary Math., Vol. 56, 1986, 343-353. (1986) Zbl0607.58031MR0855101
  21. VANDERBAUWHEDE A., Secondary bifurcations of periodic solutions in autonomous systems, Canadian mathemataical Society, Conference Proceedings, Vol. 3, 1987, 693-701. (1987) Zbl0629.34051MR0909945

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.